当前位置: 首页>>代码示例>>C++>>正文


C++ intVector::begin方法代码示例

本文整理汇总了C++中intVector::begin方法的典型用法代码示例。如果您正苦于以下问题:C++ intVector::begin方法的具体用法?C++ intVector::begin怎么用?C++ intVector::begin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在intVector的用法示例。


在下文中一共展示了intVector::begin方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

void CBKInfEngine::
Get1_5Clusters(int nnodesPerSlice, intVector& interfNds, intVecVector& clusters, 
	       intVecVector* clusters1_5Sl) const
{
    
    int nInterfNds = interfNds.size();
    
    clusters1_5Sl->assign( clusters.begin(), clusters.end() );
    clusters1_5Sl->insert( clusters1_5Sl->end(), clusters.begin(), clusters.end() );
    
    int nClusters = clusters.size();
    int i,j;
    for( i = 0; i < nClusters; i++ )
    {
	int nnodesPerClust = clusters[i].size();
	
	for( j = 0; j < nnodesPerClust; j++ )
	{
	    intVector::iterator loc = std::find( interfNds.begin(),
			    interfNds.end(), clusters[i][j] );
	    
	    (*clusters1_5Sl)[i][j] = loc - interfNds.begin();
	    (*clusters1_5Sl)[i + nClusters][j] += nInterfNds;
	}
	
    }
    
}
开发者ID:Kanwaldeep,项目名称:OpenPNL,代码行数:28,代码来源:pnlBKInferenceEngine.cpp

示例2: ranges

CMlStaticStructLearn::CMlStaticStructLearn(CStaticGraphicalModel *pGrModel,
        ELearningTypes LearnType,
        EOptimizeTypes AlgorithmType,
        EScoreFunTypes ScoreType, int nMaxFanIn,
        intVector& vAncestor, intVector& vDescent)
    :CStaticLearningEngine(pGrModel, LearnType),
     m_pResultBNet(NULL), m_pResultDAG(NULL)
{
    int nnodes = pGrModel->GetNumberOfNodes();
    m_nNodes = nnodes;
    int i;
    for (i = 0; i<nnodes; i++) m_vResultRenaming.push_back(i);

    m_ScoreType = ScoreType;
    m_Algorithm = AlgorithmType;
    m_nMaxFanIn = nMaxFanIn;
    m_ScoreMethod = MaxLh;
    m_priorType = Dirichlet;
    m_K2alfa = 0;
    m_vAncestor.assign(vAncestor.begin(), vAncestor.end());
    m_vDescent.assign(vDescent.begin(),vDescent.end());
    PNL_CHECK_RANGES(nMaxFanIn, 1, nnodes);
    intVector ranges(nMaxFanIn);
    for(i=0; i<nMaxFanIn; i++) ranges[i] = nnodes+1;
    float max = 0.0f;
    m_pNodeScoreCache =	(CSparseMatrix<float>**)malloc(nnodes * sizeof(CSparseMatrix<float>*));
    for(i=0; i<nnodes; i++)
    {
        m_pNodeScoreCache[i] = CSparseMatrix<float>::Create(nMaxFanIn,
                               &ranges.front(), max, 0);
    }
}
开发者ID:PyOpenPNL,项目名称:OpenPNL,代码行数:32,代码来源:pnlMlStaticStructLearn.cpp

示例3: intVector

CFactor::CFactor( EDistributionType dt,
                  EFactorType pt,
                  const int *domain, int nNodes, CModelDomain* pMD,
                  const intVector& obsIndices )
                  : m_Domain( domain, domain + nNodes )
{	
    /*fill enum fields:*/
    m_DistributionType = dt;
    m_FactorType = pt;
    m_pMD = pMD;
    m_factNumInHeap = m_pMD->AttachFactor(this);
    int i;
    pConstNodeTypeVector nt;
    intVector dom = intVector( domain, domain+nNodes );
    pMD->GetVariableTypes( dom, &nt );
    m_obsPositions.assign( obsIndices.begin(), obsIndices.end() );
    int numObsNodesHere = obsIndices.size();
    switch (dt)
    {
    case dtScalar:
        {
            if( pt == ftCPD )
            {
                PNL_THROW( CInvalidOperation, "scalar is only potential - to multiply" );
            }
            //if there are observed nodes - get corresponding node types
            if( numObsNodesHere )
            {
                if ( numObsNodesHere != nNodes )
                {
                    PNL_THROW( CInconsistentType,
                        "all nodes in scalar distribution must be observed" )
                }
                //need to find observed nodes in domain and check including their changed types
                for( i = 0; i < numObsNodesHere; i++ )
                {
                    nt[obsIndices[i]] = nt[obsIndices[i]]->IsDiscrete() ? pMD->GetObsTabVarType():
                        pMD->GetObsGauVarType();
                }
            }
            m_CorrespDistribFun = CScalarDistribFun::Create(nNodes, &nt.front());
            break;
        }
	case dtTree:
        {
            if( pt != ftCPD )
            {
                PNL_THROW( CInvalidOperation, "Tree is only CPD" );
            }
            m_CorrespDistribFun = CTreeDistribFun::Create(nNodes, &nt.front());
            break;
        }
    case dtTabular:
        {
            
            if(( pt == ftPotential )&&( numObsNodesHere ))
            {
                //need to find observed nodes in domain and check including their changed types
                for( i = 0; i < numObsNodesHere; i++ )
                {
                    //change node type for this node
                    nt[obsIndices[i]] = nt[obsIndices[i]]->IsDiscrete() ? pMD->GetObsTabVarType():
                    pMD->GetObsGauVarType();
                }
            }
            //check all node types corresponds Tabular distribution
            for( i = 0; i < nNodes; i++ )
            {
                if((!(( nt[i]->IsDiscrete() )||
                    ( !nt[i]->IsDiscrete()&&(nt[i]->GetNodeSize() == 0)))))
                {
                    PNL_THROW( CInconsistentType, 
                        "node types must corresponds Tabular type" );
                }
            }
            m_CorrespDistribFun = CTabularDistribFun::Create( nNodes,
                &nt.front(), NULL );
            break;
        }
    case dtGaussian:
        {
            switch (pt)
            {
            case ftPotential:
                {
                    //need to find observed nodes in domain and check including their changed types
                    for( i = 0; i < numObsNodesHere; i++ )
                    {
                        //change node type for this node
                        nt[obsIndices[i]] = nt[obsIndices[i]]->IsDiscrete() ?
                                pMD->GetObsTabVarType():pMD->GetObsGauVarType();
                    }
                    for( i = 0; i < nNodes; i++ )
                    {
                        if( nt[i]->IsDiscrete() && (nt[i]->GetNodeSize() != 1))
                        {
                            PNL_THROW( CInvalidOperation,
                                "Gaussian potential must be of Gaussian nodes only" )
                        }
                    }
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:pnlFactor.cpp


注:本文中的intVector::begin方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。