本文整理汇总了C++中graph::visit方法的典型用法代码示例。如果您正苦于以下问题:C++ graph::visit方法的具体用法?C++ graph::visit怎么用?C++ graph::visit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类graph
的用法示例。
在下文中一共展示了graph::visit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getNumComponents
int getNumComponents(graph &g)
{
g.clearMark();
g.clearVisit();
int numComponents = 0;
queue<int> currentMoves;
for (int n=0;n<g.numNodes();n++)
{
if (!g.isVisited(n))
{
numComponents++;
int nodeNumber=n;
g.visit(nodeNumber);
currentMoves.push(nodeNumber);
while(currentMoves.size() > 0)
{
int currentNode = currentMoves.front();
currentMoves.pop();
//Populate a list of nodes that can be visited
for (int i=0;i<g.numNodes();i++)
{
if (g.isEdge(currentNode,i) && !g.isVisited(i))
{
g.mark(currentNode,i);
g.visit(i);
currentMoves.push(i);
}
}
}
}
}
return numComponents;
}
示例2: isConnected
bool isConnected(graph &g)
// Returns true if the graph g is connected. Otherwise returns false.
{
queue<int> que;
int id=0,count=1;
que.push(id);
g.visit(id);
while(count<g.numNodes() && !que.empty())
{
id=que.front();
for(int i=0;i<g.numNodes();i++)
{
if (g.isEdge(id,i) && !g.isVisited(i))
{
g.visit(i);
que.push(i);
count++;
}
}
que.pop();
}
for (int z=0;z<g.numNodes();z++)
g.unVisit(z);
if(count==g.numNodes())
return true;
else return false;
}
示例3: findMSF
void findMSF(graph &g, graph &sf, int start)
// finds a minimum spanning tree in graph 'g'
{
priority_queue<edge, vector<edge>, CompareEdge> pq;
vector<int> lst = getNeighbors(start, g);
// build our priority queue
for (int i = 0; i < lst.size(); i++)
{
pq.push(g.getEdge(start, lst[i]));
g.mark(start, lst[i]);
}
// visit the start node
g.visit(start);
int src, dst, w;
edge top;
while (!pq.empty())
{
top = pq.top();
pq.pop();
src = top.getSource();
dst = top.getDest();
w = top.getWeight();
// add edges
if (!sf.isEdge(src, dst))
{
sf.addEdge(src, dst, w);
sf.addEdge(dst, src, w);
// delete edges if we make a cycle
if (isCyclic(sf))
{
sf.removeEdge(src, dst);
sf.removeEdge(dst, src);
}
else
{
g.visit(src);
lst = getNeighbors(dst, g);
for (int i = 0; i < lst.size(); i++)
{
if (!g.isMarked(dst, lst[i]))
{
pq.push(g.getEdge(dst, lst[i]));
g.mark(dst, lst[i]);
}
} // for
} // else
} // if
} // while
} // findMSF
示例4: isCyclic
bool isCyclic(graph &g)
// Returns true if the graph g contains a cycle. Otherwise, returns false.
{
queue<int> que;
int id=0,count=1;
bool first=true;
vector<int> parentCount(g.numNodes(),-1);
que.push(id);
g.visit(id);
while(count<g.numNodes() || !que.empty())
{
if (que.empty())
{
id=count;
que.push(id);
g.visit(id);
count++;
}
else
id=que.front();
for(int i=0;i<g.numNodes();i++)
{
if (g.isEdge(id,i) && i!=que.front())
{
if(!g.isVisited(i))
{
g.visit(i);
que.push(i);
count++;
parentCount[i]=id;
}
else if(parentCount[id]==i)
continue;
else
{
for (int z=0;z<g.numNodes();z++)
g.unVisit(z);
return true;
}
}
}
que.pop();
}
for (int z=0;z<g.numNodes();z++)
g.unVisit(z);
return false;
}
示例5: findCycle
void findCycle(int curr, int start, bool &found, graph &g)
// checks for cycles in a graph
{
g.mark(curr);
vector<int> lst = getNeighbors(curr, g);
for (int i = 0; i < lst.size(); i++)
{
if (start == lst[i])
{
continue;
}
if (g.isMarked(lst[i]))
{
found = true;
}
else if (!g.isVisited(lst[i]))
{
findCycle(lst[i], curr, found, g);
}
} // for
g.unMark(curr);
g.visit(curr);
} // findCycle
示例6: recursiveDFS
void recursiveDFS(int curId, int dstId, graph &g,
stack<int> &path, bool &done)
// depth first search that uses the mem stack to search the graph g
{
if (curId == dstId)
{
done = true;
path.push(curId);
}
else
{
g.mark(curId);
g.visit(curId);
vector<int> lst = getNeighbors(curId, g);
while (!lst.empty())
{
int current = lst.back();
lst.pop_back();
if (!g.isVisited(current))
{
recursiveDFS(current, dstId, g, path, done);
}
if (done)
// if we found our node then construct our path
{
path.push(curId);
break;
}
}
}
}
示例7: dfsCyclic
bool dfsCyclic(graph &g, int current, int prev)
// depth first search to find cycles in graph
// first removes the preceeding node from vector of neighbors
// then if there is a visited node neighbor, there is a cycle
// returns true for there is a cycle, otherwise false
{
g.visit(current);
vector<int> neighbors = getNeighbors(g, current);
// remove prev from neighbors
// make sure neighbors is not empty so we dont erase from empty vector
if (prev != NONE && !neighbors.empty())
{
int index = 0;
for (int k = 0; k < (int) neighbors.size(); k++)
{
if (neighbors[k] == prev)
index = k;
}
// at some index, it is the (index + 1)th element
// so just have to do .begin() + index
neighbors.erase(neighbors.begin() + index);
}
for (int i = 0; i < (int) neighbors.size(); i++)
{
if (g.isVisited(neighbors[i]))
return true;
else if (dfsCyclic(g, neighbors[i], current))
return true;
}
return false; // ran through all neighbors and no cycles
}
示例8: findSpanningForest
void findSpanningForest(graph &g, graph &sf)
// Create a graph sf that contains a spanning forest on the graph g.
{
queue<int> que;
int id=0,count=1;
bool first=true;
vector<int> parentCount(g.numNodes(),-1);
que.push(id);
g.visit(id);
while(count<g.numNodes() || !que.empty())
{
if (que.empty())
{
id=count;
que.push(id);
g.visit(id);
count++;
}
else
id=que.front();
for(int i=0;i<g.numNodes();i++)
{
if (g.isEdge(id,i) && i!=que.front())
{
if(!g.isVisited(i) && parentCount[id]!=i)
{
g.visit(i);
sf.addEdge(id,i,g.getEdgeWeight(i,id));
sf.addEdge(i,id,g.getEdgeWeight(i,id));
que.push(i);
count++;
parentCount[id]++;
}
}
}
que.pop();
}
for (int z=0;z<g.numNodes();z++)
g.unVisit(z);
}
示例9: dfs
void dfs(graph &g, int current)
// generic depth first search traversal
{
g.visit(current);
vector<int> neighbors = getNeighbors(g, current);
for (int i = 0; i < (int) neighbors.size(); i++)
{
if (!g.isVisited(neighbors[i]))
dfs(g, neighbors[i]);
}
}
示例10: kruskal
void kruskal(graph &g, graph &sf)
// Given a weighted graph g, sets sf equal to a minimum spanning
// forest on g. Uses Kruskal's algorithm.
{
g.clearMark();
g.clearVisit();
numComponents=0;
while(!g.allNodesVisited())
{
// find the smallest edge
int smallestEdgeWeight = -1;
int smallestEdgeBeg = -1;
int smallestEdgeEnd = -1;
for(int i = 0; i < g.numNodes(); i++)
{
for(int j = 0; j < g.numNodes(); j++)
{
if(g.isEdge(i, j) && !g.isVisited(i, j) && !g.isVisited(j, i)
&& (!g.isVisited(i) || !g.isVisited(j)))
{
if(g.getEdgeWeight(i, j) < smallestEdgeWeight
|| smallestEdgeWeight == -1)
{
smallestEdgeWeight = g.getEdgeWeight(i, j);
smallestEdgeBeg = i;
smallestEdgeEnd = j;
}
}
}
}
// add the new edge
g.visit(smallestEdgeBeg);
g.visit(smallestEdgeEnd);
g.visit(smallestEdgeBeg, smallestEdgeEnd);
sf.addEdge(smallestEdgeBeg, smallestEdgeEnd);
sf.setEdgeWeight(smallestEdgeBeg, smallestEdgeEnd, smallestEdgeWeight);
}
numComponents = getNumComponents(sf);
}
示例11: prim
void prim(graph &g, graph &sf)
// Given a weighted graph g, sets sf equal to a minimum spanning
// forest on g. Uses Prim's algorithm.
{
g.clearMark();
g.clearVisit();
numComponents=0;
int currentNode = 0;
while(!g.allNodesVisited())
{
// find next currentNode
while(g.isVisited(currentNode) && currentNode < g.numNodes())
{
currentNode++;
}
g.visit(currentNode);
int smallestEdgeWeight = -1;
int smallestEdgeNode = -1;
// find shortest new edge from currentNode
for(int i = 0; i < g.numNodes(); i++)
{
if(g.isEdge(currentNode, i))
{
if(g.getEdgeWeight(currentNode, i) < smallestEdgeWeight
|| smallestEdgeWeight == -1)
{
smallestEdgeWeight = g.getEdgeWeight(currentNode, i);
smallestEdgeNode = i;
}
}
}
// add the new edge
g.visit(smallestEdgeNode);
sf.addEdge(currentNode, smallestEdgeNode);
sf.setEdgeWeight(currentNode, smallestEdgeNode, smallestEdgeWeight);
}
numComponents = getNumComponents(sf);
}
示例12: dfsAddEdges
void dfsAddEdges(graph &g, int current, graph &sf)
// depth first search to visit all nodes and add edges to unvisited nodes
{
g.visit(current);
vector<int> neighbors = getNeighbors(g, current);
for (int i = 0; i < (int) neighbors.size(); i++)
{
if (!g.isVisited(neighbors[i]))
{
sf.addEdge(current, neighbors[i], g.getEdgeWeight(current, neighbors[i]));
sf.addEdge(neighbors[i], current, g.getEdgeWeight(neighbors[i], current));
dfsAddEdges(g, neighbors[i], sf);
}
}
}
示例13: findSpanningForest
void findSpanningForest(graph &g, graph &sf)
// Create a graph sf that contains a spanning forest on the graph g.
{
g.clearMark();
g.clearVisit();
numComponents=0;
queue<int> currentMoves;
for (int n=0;n<g.numNodes();n++)
{
if (!g.isVisited(n))
{
numComponents++;
int nodeNumber=n;
g.visit(nodeNumber);
currentMoves.push(nodeNumber);
while(currentMoves.size() > 0)
{
int currentNode = currentMoves.front();
currentMoves.pop();
//Populate a list of nodes that can be visited
for (int i=0;i<g.numNodes();i++)
{
if (g.isEdge(currentNode,i) && !g.isVisited(i))
{
g.mark(currentNode,i);
sf.addEdge(currentNode,i);
sf.setEdgeWeight(currentNode, i, g.getEdgeWeight(currentNode, i));
g.visit(i);
currentMoves.push(i);
}
}
}
}
}
}
示例14: isCyclic
bool isCyclic(graph &g,int nodeNumber)
// Returns true if the graph g contains a cycle. Otherwise, returns false.
{
if (g.isVisited(nodeNumber))
{
return true;
}
//Visit the node
g.visit(nodeNumber);
for (int i=0;i<g.numNodes();i++)
{
if (g.isEdge(nodeNumber,i))
{
return isCyclic(g,i);
}
}
return false;
}
示例15: nonRecursiveDFS
vector<stack<int> > nonRecursiveDFS(int startId, int dstId, graph &g )
// implement a version of Depth First Search that uses a stack data structure
// and does not use recursion returns all paths
{
vector< stack<int> > paths;
stack<int> st;
stack<edge> edges;
st.push(startId);
stack<int> path;
while (!st.empty())
{
int top = st.top();
//check if before we had gone into a sink and remove from path
while (!edges.empty() && path.top() != edges.top().getSource())
{
path.pop();
}
path.push(top);
if (!edges.empty())
{
edges.pop();
}
st.pop();
g.visit(top);
if (top == dstId)
{
paths.push_back(path);
}
vector<int> lst = getNeighbors(top, g);
for (int i = 0; i < lst.size(); i++)
{
if (!g.isVisited(lst[i]))
{
st.push(lst[i]);
edges.push(g.getEdge(top, lst[i]));
}
}
}
return paths;
}