本文整理汇总了C++中graph::mark方法的典型用法代码示例。如果您正苦于以下问题:C++ graph::mark方法的具体用法?C++ graph::mark怎么用?C++ graph::mark使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类graph
的用法示例。
在下文中一共展示了graph::mark方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: prim
void prim(graph &g, graph &sf)
// from weighted graph g, set sf to minimum spanning forest
// finds the minimum cost edge from a marked node to an unmarked node and adds it
// loop through all nodes and if a node is not marked,
// start adding edges with it as start
{
g.clearMark();
for (int n = 0; n < g.numNodes(); n++) // loop through all nodes
{
if (!g.isMarked(n))
{
g.mark(n);
edgepair pair = getMinEdge(g);
while (pair.i != NONE && pair.j != NONE)
{
// mark edge
g.mark(pair.i, pair.j);
g.mark(pair.j, pair.i);
// add both edges to create undirected edge
sf.addEdge(pair.i, pair.j, pair.cost);
sf.addEdge(pair.j, pair.i, pair.cost);
g.mark(pair.j); // mark the unmarked node
pair = getMinEdge(g); // get next edge
}
}
// if node is marked, just continue
}
}
示例2: findMSF
void findMSF(graph &g, graph &sf, int start)
// finds a minimum spanning tree in graph 'g'
{
priority_queue<edge, vector<edge>, CompareEdge> pq;
vector<int> lst = getNeighbors(start, g);
// build our priority queue
for (int i = 0; i < lst.size(); i++)
{
pq.push(g.getEdge(start, lst[i]));
g.mark(start, lst[i]);
}
// visit the start node
g.visit(start);
int src, dst, w;
edge top;
while (!pq.empty())
{
top = pq.top();
pq.pop();
src = top.getSource();
dst = top.getDest();
w = top.getWeight();
// add edges
if (!sf.isEdge(src, dst))
{
sf.addEdge(src, dst, w);
sf.addEdge(dst, src, w);
// delete edges if we make a cycle
if (isCyclic(sf))
{
sf.removeEdge(src, dst);
sf.removeEdge(dst, src);
}
else
{
g.visit(src);
lst = getNeighbors(dst, g);
for (int i = 0; i < lst.size(); i++)
{
if (!g.isMarked(dst, lst[i]))
{
pq.push(g.getEdge(dst, lst[i]));
g.mark(dst, lst[i]);
}
} // for
} // else
} // if
} // while
} // findMSF
示例3: recursiveDFS
void recursiveDFS(int curId, int dstId, graph &g,
stack<int> &path, bool &done)
// depth first search that uses the mem stack to search the graph g
{
if (curId == dstId)
{
done = true;
path.push(curId);
}
else
{
g.mark(curId);
g.visit(curId);
vector<int> lst = getNeighbors(curId, g);
while (!lst.empty())
{
int current = lst.back();
lst.pop_back();
if (!g.isVisited(current))
{
recursiveDFS(current, dstId, g, path, done);
}
if (done)
// if we found our node then construct our path
{
path.push(curId);
break;
}
}
}
}
示例4: findCycle
void findCycle(int curr, int start, bool &found, graph &g)
// checks for cycles in a graph
{
g.mark(curr);
vector<int> lst = getNeighbors(curr, g);
for (int i = 0; i < lst.size(); i++)
{
if (start == lst[i])
{
continue;
}
if (g.isMarked(lst[i]))
{
found = true;
}
else if (!g.isVisited(lst[i]))
{
findCycle(lst[i], curr, found, g);
}
} // for
g.unMark(curr);
g.visit(curr);
} // findCycle
示例5: getNumComponents
int getNumComponents(graph &g)
{
g.clearMark();
g.clearVisit();
int numComponents = 0;
queue<int> currentMoves;
for (int n=0;n<g.numNodes();n++)
{
if (!g.isVisited(n))
{
numComponents++;
int nodeNumber=n;
g.visit(nodeNumber);
currentMoves.push(nodeNumber);
while(currentMoves.size() > 0)
{
int currentNode = currentMoves.front();
currentMoves.pop();
//Populate a list of nodes that can be visited
for (int i=0;i<g.numNodes();i++)
{
if (g.isEdge(currentNode,i) && !g.isVisited(i))
{
g.mark(currentNode,i);
g.visit(i);
currentMoves.push(i);
}
}
}
}
}
return numComponents;
}
示例6: getEdges
pqueue getEdges(graph &g)
// iterate through graph and construct a priority queue with minimum cost
// only add an edgepair for edge between marked node and unmarked node
{
pqueue edges;
for (int i = 0; i < g.numNodes(); i++)
{
g.mark(i);
for (int j = 0; j < g.numNodes(); j++)
{
if (g.isMarked(i) && !g.isMarked(j) && g.isEdge(i, j))
{
edgepair pair = {i, j, g.getEdgeWeight(i, j)};
edges.push(pair);
}
}
}
return edges;
}
示例7: findSpanningForest
void findSpanningForest(graph &g, graph &sf)
// Create a graph sf that contains a spanning forest on the graph g.
{
g.clearMark();
g.clearVisit();
numComponents=0;
queue<int> currentMoves;
for (int n=0;n<g.numNodes();n++)
{
if (!g.isVisited(n))
{
numComponents++;
int nodeNumber=n;
g.visit(nodeNumber);
currentMoves.push(nodeNumber);
while(currentMoves.size() > 0)
{
int currentNode = currentMoves.front();
currentMoves.pop();
//Populate a list of nodes that can be visited
for (int i=0;i<g.numNodes();i++)
{
if (g.isEdge(currentNode,i) && !g.isVisited(i))
{
g.mark(currentNode,i);
sf.addEdge(currentNode,i);
sf.setEdgeWeight(currentNode, i, g.getEdgeWeight(currentNode, i));
g.visit(i);
currentMoves.push(i);
}
}
}
}
}
}
示例8: prim
void prim(graph &g, graph &sf)
// Given a weighted graph g, sets sf equal to a minimum spanning
// forest on g. Uses Prim's algorithm.
{
NodeWeight minWeight = 0;
NodeWeight minR, minP;
bool edgeFound;
g.clearMark();
for(int i=0; i<g.numNodes(); i++)
{
if(!g.isMarked(i))
{
g.mark(i);
for(int j=0; j<g.numNodes()-1; j++)
//start at i and grow a spanning tree untill no more can be added
{
edgeFound = false;
minWeight = MaxEdgeWeight;
for(int r=0; r<g.numNodes(); r++)
{
for(int p=0; p<g.numNodes(); p++)
{
if(g.isEdge(r,p) && g.isMarked(r) && !g.isMarked(p))
{
if(g.getEdgeWeight(r,p) < minWeight)
{
minWeight = g.getEdgeWeight(r,p);
minR= r;
minP= p;
edgeFound = true;
}
}
}
}
//if edge was found add it to the tree
if(edgeFound)
{
g.mark(minR,minP);
g.mark(minP, minR);
g.mark(minP);
}
}
}
}
//add marked edges to spanning forest graph
for(int i=0; i<g.numNodes(); i++)
{
for(int j=i+1; j<g.numNodes(); j++)
{
if(g.isEdge(i,j) && g.isMarked(i,j))
{
sf.addEdge(i,j,g.getEdgeWeight(i,j));
sf.addEdge(j,i,g.getEdgeWeight(j,i));
cout<<"adding edge "<< i << " "<< j << endl;
cout<<"num edges: "<<sf.numEdges() << endl;
}
}
}
}