本文整理汇总了C++中VNode::getChildEntry方法的典型用法代码示例。如果您正苦于以下问题:C++ VNode::getChildEntry方法的具体用法?C++ VNode::getChildEntry怎么用?C++ VNode::getChildEntry使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类VNode
的用法示例。
在下文中一共展示了VNode::getChildEntry方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: newEntry
//Replace the Entry(_enitty_id)'s EntityBitSet with _bitset
//Entry of _entity_id must exists
bool
VSTree::replaceEntry(int _entity_id, const EntityBitSet& _bitset)
{
VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);
if (leafNodePtr == NULL)
{
cerr << "error, can not find the mapping leaf node. @VSTree::replaceEntry" << endl;
return false;
}
// find the mapping child entry, update it and refresh signature.
int childNum = leafNodePtr->getChildNum();
bool findFlag = false;
for (int i = 0; i < childNum; i++)
{
const SigEntry& entry = leafNodePtr->getChildEntry(i);
if (entry.getEntityId() == _entity_id)
{
SigEntry newEntry(EntitySig(_bitset), _entity_id);
leafNodePtr->setChildEntry(i, newEntry);
leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
findFlag = true;
break;
}
}
if (!findFlag)
{
cerr << "error, can not find the mapping child entry in the leaf node. @VSTree::replaceEntry" << endl;
return false;
}
return true;
}
示例2: updateEntry
//Incrementally update bitset of _entity_id
//conduct OR operation on Entry(_entity_id)'s EntityBitSet with _bitset
//Entry of _entity_id must exists
bool VSTree::updateEntry(int _entity_id, const EntityBitSet& _bitset)
{
VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);
if (leafNodePtr == NULL)
{
cerr << "error, can not find the mapping leaf node. @VSTree::updateEntry" << endl;
return false;
}
// find the mapping child entry, update it and refresh signature.
int childNum = leafNodePtr->getChildNum();
bool findFlag = false;
for (int i = 0; i < childNum; i++)
{
const SigEntry& entry = leafNodePtr->getChildEntry(i);
if (entry.getEntityId() == _entity_id)
{
SigEntry newEntry = entry;
newEntry |= SigEntry(EntitySig(_bitset), _entity_id);
//debug
// {
// if (_entity_id == 10)
// {
// stringstream _ss;
// _ss << "lead node line: " << leafNodePtr->getFileLine() << endl;
// _ss << "old entry:\n " << Signature::BitSet2str(entry.getEntitySig().entityBitSet) << endl;
// _ss << "new entry:\n " << Signature::BitSet2str(newEntry.getEntitySig().entityBitSet) << endl;
// Util::logging(_ss.str());
// }
// }
leafNodePtr->setChildEntry(i, newEntry);
leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
findFlag = true;
break;
}
}
if (!findFlag)
{
cerr<< "error, can not find the mapping child entry in the leaf node. @VSTree::updateEntry" << endl;
return false;
}
return true;
}
示例3:
//remove an existed Entry(_entity_id) from VSTree
bool
VSTree::removeEntry(int _entity_id)
{
VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);
if (leafNodePtr == NULL)
{
cerr<< "error, can not find the mapping leaf node. @VSTree::removeEntry" << endl;
return false;
}
// seek the entry index of the leaf node.
int entryIndex = -1;
int childNum = leafNodePtr->getChildNum();
for (int i=0;i<childNum;i++)
{
if (leafNodePtr->getChildEntry(i).getEntityId() == _entity_id)
{
entryIndex = i;
break;
}
}
if (entryIndex == -1)
{
cerr << "error, can not find the entry in leaf node. @VSTree::removeEntry" << endl;
return false;
}
// remove the entry in this leaf node and refresh itself and its ancestors' signature.
leafNodePtr->removeChild(entryIndex);
leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
this->entry_num --;
//we do not consider the situation which the leaf node is to be empty by now...
//in a better way, if the leaf node is empty after removing entry, we should delete it. and recursively judge whether its
//father is empty, and delete its father node if true. to make the VSTree more balanced, we should combine two nodes if
//their child number are less than the MIN_CHILD_NUM. when deleting one node from the tree, we should also remove it from
//tree node file in hard disk by doing some operations on the node_buffer.
return true;
}
示例4: refreshAncestorSignature
void VNode::refreshAncestorSignature(LRUCache& _nodeBuffer)
{
// refresh self node's signature.
this->refreshSignature();
// refresh father node's signature.
VNode* fatherNodePtr = this->getFather(_nodeBuffer);
if (fatherNodePtr == NULL)
{
if (!this->isRoot())
cerr << "error, can not find father node. @VNode::refreshSignature" << endl;
return;
}
int rank = this->getIndexInFatherNode(_nodeBuffer);
if (fatherNodePtr->getChildEntry(rank).getEntitySig() != this->entry.getEntitySig())
{
fatherNodePtr->setChildEntry(rank, this->entry);
fatherNodePtr->refreshAncestorSignature(_nodeBuffer);
}
}
示例5: sort
void
VSTree::split(VNode* _p_node_being_split, const SigEntry& _insert_entry, VNode* _p_insert_node)
{
#ifdef DEBUG_VSTREE
stringstream _ss;
_ss << "**********************split happen at "
<< _p_node_being_split->getFileLine() << endl;
_ss << _p_node_being_split->to_str() << endl;
Util::logging(_ss.str());
#endif
// first, add the new child node(if not leaf) or child entry(if leaf) to the full node.
bool just_insert_entry = (_p_insert_node == NULL);
if(just_insert_entry)
{
_p_node_being_split->addChildEntry(_insert_entry, true);
}
else
{
_p_node_being_split->addChildNode(_p_insert_node, true);
}
SigEntry entryA, entryB;
//BETTER: use hanming, xor result or the vector included angle to guess the distince.
//And then also use the farest two as seeds.
//
//two seeds to generate two new nodes.
//seedA kernel: the SigEntry with the minimal count of signature.
//seedB kernel: the SigEntry with the maximal count of signature.
int maxCount = 0; // record the minimal signature count.
int entryA_index = 0; // record the seedA kernel index.
for(int i = 0; i < VNode::MAX_CHILD_NUM; i++)
{
int currentCount = (int) _p_node_being_split->getChildEntry(i).getSigCount();
if(maxCount < currentCount)
{
maxCount = currentCount;
entryA_index = i;
}
}
entryA = _p_node_being_split->getChildEntry(entryA_index);
maxCount = 0;
int entryB_index = 0; // record the seedB kernel index.
for(int i = 0; i < VNode::MAX_CHILD_NUM; i++)
{
//NOTICE:I think xOR should be used here to choose the farest two
int currentCount = entryA.xOR(_p_node_being_split->getChildEntry(i));
//int currentCount = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
if(i != entryA_index && maxCount <= currentCount)
{
maxCount = currentCount;
entryB_index = i;
}
}
entryB = _p_node_being_split->getChildEntry(entryB_index);
// AEntryIndex: the entry index near seedA.
// BEntryIndex: the entry index near seedB.
std::vector<int> entryIndex_nearA, entryIndex_nearB;
entryIndex_nearA.clear();
entryIndex_nearB.clear();
entryIndex_nearA.push_back(entryA_index);
entryIndex_nearB.push_back(entryB_index);
int nearA_max_size, nearB_max_size;
bool nearA_tooSmall, nearB_tooSmall;
for(int i = 0; i < VNode::MAX_CHILD_NUM; i++)
{
if(i == entryA_index || i == entryB_index) continue;
//should guarantee that each new node has at least MIN_CHILD_NUM children.
nearA_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearB.size();
nearA_tooSmall = (nearA_max_size <= VNode::MIN_CHILD_NUM);
if(nearA_tooSmall)
{
for(; i < VNode::MAX_CHILD_NUM; i++)
{
if (i == entryA_index || i == entryB_index) continue;
entryIndex_nearA.push_back(i);
}
break;
}
nearB_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearA.size();
nearB_tooSmall = (nearB_max_size <= VNode::MIN_CHILD_NUM);
if(nearB_tooSmall)
{
for(; i < VNode::MAX_CHILD_NUM; i++)
{
if(i == entryA_index || i == entryB_index) continue;
entryIndex_nearB.push_back(i);
}
break;
}
//.........这里部分代码省略.........
示例6: filterSig
//retrieve the candidate entity ID which signature can cover the _entity_bit_set, and add them to the _p_id_list.
void
VSTree::retrieveEntity(const EntityBitSet& _entity_bit_set, IDList* _p_id_list)
{
Util::logging("IN retrieveEntity");
EntitySig filterSig(_entity_bit_set);
#ifdef DEBUG_VSTREE
cerr << "the filter signature: " << filterSig.to_str() << endl;
#endif
queue<int> nodeQueue; //searching node file line queue.
//debug
{
stringstream _ss;
_ss << "filterSig=" << Signature::BitSet2str(filterSig.entityBitSet) << endl;
Util::logging(_ss.str());
}
const SigEntry& root_entry = (this->getRoot())->getEntry();
Util::logging("Get Root Entry");
if(root_entry.cover(filterSig))
{
nodeQueue.push(this->getRoot()->getFileLine());
Util::logging("root cover the filter_sig");
}
else
{
Util::logging("warning: root is not cover the filter_sig");
}
//debug
// {
// Util::logging(this->getRoot()->to_str());
// Util::logging("Before BFS");
// }
//using BFS algorithm to traverse the VSTree and retrieve the entry.
while (!nodeQueue.empty())
{
int currentNodeFileLine = nodeQueue.front();
nodeQueue.pop();
VNode* currentNodePtr = this->getNode(currentNodeFileLine);
int childNum = currentNodePtr->getChildNum();
//debug
// {
// std::stringstream _ss;
// _ss << "childNum of ["
// << currentNodePtr->getFileLine()
// << "] is " << childNum << endl;
//
// for (int i=0;i<childNum;i++)
// {
// _ss << currentNodePtr->getChildFileLine(i) << " ";
// }
// _ss << endl;
//
// Util::logging(_ss.str());
// }
int valid = 0;
for (int i = 0; i < childNum; i++)
{
const SigEntry& entry = currentNodePtr->getChildEntry(i);
#ifdef DEBUG_VSTREE
//cerr << "current entry: " << entry.to_str() << endl;
#endif
if (entry.cover(filterSig))
{
valid++;
if (currentNodePtr->isLeaf())
{
// if leaf node, add the satisfying entries' entity id to result list.
_p_id_list->addID(entry.getEntityId());
//debug
// {
// stringstream _ss;
// _ss << "child_" << i << " cover filter sig" << endl;
// _ss << Signature::BitSet2str(entry.getEntitySig().entityBitSet)<< endl;
// Util::logging(_ss.str());
// }
}
else
{
// if non-leaf node, add the child node pointer to the searching queue.
//VNode* childPtr = currentNodePtr->getChild(i, *(this->node_buffer));
// if non-leaf node, add the child node file line to the searching queue.
int childNodeFileLine = currentNodePtr->getChildFileLine(i);
nodeQueue.push(childNodeFileLine);
//debug
// {
// stringstream _ss;
// _ss << "child[" << childPtr->getFileLine() << "] cover filter sig" << endl;
// Util::logging(_ss.str());
//.........这里部分代码省略.........
示例7: if
//.........这里部分代码省略.........
ccase = 4;
}
if(ccase > 2)
{
p = tp;
n = tn;
}
}
VNode* tmp = NULL;
int child_no = _child->getFileLine();
int father_no = _father->getFileLine();
#ifdef DEBUG
if(ccase == 1 || ccase == 3)
{
cout << "union happened" << endl;
}
else if(ccase == 2 || ccase == 4)
{
cout << "move happened" << endl;
}
cout<< "father num: "<<fn<<" child num: "<<cn<<" neighbor num: "<<n<<endl;
cout<<"child file line "<<child_no<<endl;
cout<<"neighbor file line "<<p->getFileLine()<<endl;
#endif
switch(ccase)
{
case 1: //union right to this
if(_child->isLeaf())
{
_child->setChildFileLine(_entry_index, p->getChildFileLine(0));
_child->setChildEntry(_entry_index, p->getChildEntry(0));
for(int i = 1; i < n; ++i)
{
_child->setChildFileLine(cn+i-1, p->getChildFileLine(i));
_child->addChildEntry(p->getChildEntry(i));
}
}
else
{
_child->setChildFileLine(_entry_index, p->getChildFileLine(0));
_child->setChildEntry(_entry_index, p->getChildEntry(0));
tmp = p->getChild(0, *(this->node_buffer));
tmp->setFatherFileLine(child_no);
for(int i = 1; i < n; ++i)
{
tmp = p->getChild(i, *(this->node_buffer));
//cout<<i<<" "<<_child->getChildNum()<<endl;
_child->addChildNode(tmp);
//_child->setChildNum(cn+i);
//tmp->setFatherFileLine(child_no);
}
}
this->removeNode(p);
_child->refreshSignature();
//recursive:to remove child index+1 in father
this->coalesce(_father, _child_index+1);
break;
case 2: //move one from right
_child->setChildFileLine(_entry_index, p->getChildFileLine(n-1));
_child->setChildEntry(_entry_index, p->getChildEntry(n-1));
_child->refreshSignature();
if(!_child->isLeaf())
示例8:
//remove an existed Entry(_entity_id) from VSTree
bool
VSTree::removeEntry(int _entity_id)
{
VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);
if (leafNodePtr == NULL)
{
cerr<< "error, can not find the mapping leaf node. @VSTree::removeEntry" << endl;
return false;
}
// seek the entry index of the leaf node.
int entryIndex = -1;
int childNum = leafNodePtr->getChildNum();
//cout<<"root file line: "<<this->root_file_line<<" "<<"max nid num: "<<this->max_nid_alloc<<endl;
//cout<<"node num: "<<this->node_num<<" "<<"file line: "<<leafNodePtr->getFileLine()<<" "<<"child num: "<<childNum<<endl;
for(int i = 0; i < childNum; i++)
{
if(leafNodePtr->getChildEntry(i).getEntityId() == _entity_id)
{
entryIndex = i;
break;
}
}
if(entryIndex == -1)
{
cerr << "error, can not find the entry in leaf node. @VSTree::removeEntry" << endl;
return false;
}
//BETTER?:consider up->bopttom to deal, not find leaf and recursively
if(leafNodePtr->isRoot())
{
if(childNum == 1)
{ //the tree is empty now
leafNodePtr->removeChild(entryIndex);
leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
this->removeNode(leafNodePtr);
this->root_file_line = -1;
this->height = 0;
this->entry_num = 0;
this->node_num = 0;
}
else
{
leafNodePtr->removeChild(entryIndex);
leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
}
}
else
{
if(childNum <= VNode::MIN_CHILD_NUM)
{
//cerr << "In VSTree::remove() -- the node is invalid" << endl;
//TODO+BETTER:this may search again, too costly
//VNode* fatherNodePtr = leafNodePtr->getFather(*(this->node_buffer));
////int index = leafNodePtr->getIndexInFatherNode(*(this->node_buffer));
//int n = fatherNodePtr->getChildNum();
//for (int i = 0; i < n; ++i)
//{
//if (fatherNodePtr->getChildFileLine(i) == leafNodePtr->getFileLine())
//{
//this->coalesce(fatherNodePtr, i, leafNodePtr, entryIndex);
//break;
//}
//}
//return false;
this->coalesce(leafNodePtr, entryIndex);
}
else
{
leafNodePtr->removeChild(entryIndex);
leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
}
}
this->entry_num--;
this->entityID2FileLineMap.erase(_entity_id);
//NOTICE:insert is costly but can keep balance.
//However, remove is not too costly but can not keep balance at all.
//And remove maybe error if without coalesce!
//If remove and insert are both wonderful, update/replace can both be balanced using delete and insert again.
//(not care the balance now, if insert/delete many times, rebuilding is suggested)
//we do not consider the situation which the leaf node is to be empty by now...
//in a better way, if the leaf node is empty after removing entry, we should delete it. and recursively judge whether its
//father is empty, and delete its father node if true. to make the VSTree more balanced, we should combine two nodes if
//their child number are less than the MIN_CHILD_NUM. when deleting one node from the tree, we should also remove it from
//tree node file in hard disk by doing some operations on the node_buffer.
return true;
}
示例9: split
void VSTree::split(VNode* _p_node_being_split, const SigEntry& _insert_entry, VNode* _p_insert_node)
{
//debug
// {
// stringstream _ss;
// _ss << "**********************split happen at "
// << _p_node_being_split->getFileLine() << endl;
// _ss << _p_node_being_split->to_str() << endl;
// Util::logging(_ss.str());
// }
// first, add the new child node(if not leaf) or child entry(if leaf) to the full node.
bool just_insert_entry = (_p_insert_node == NULL);
if (just_insert_entry)
{
_p_node_being_split->addChildEntry(_insert_entry, true);
}
else
{
_p_node_being_split->addChildNode(_p_insert_node, true);
}
SigEntry entryA, entryB;
/* two seeds to generate two new nodes.
* seedA kernel: the SigEntry with the minimal count of signature.
* seedB kernel: the SigEntry with the second minimal count of signature.
* */
int minCount = 0; // record the minimal signature count.
int entryA_index = 0; // record the seedA kernel index.
for (int i=0;i<VNode::MAX_CHILD_NUM;i++)
{
int currentCount = (int) _p_node_being_split->getChildEntry(i).getSigCount();
if (minCount < currentCount)
{
minCount = currentCount;
entryA_index = i;
}
}
entryA = _p_node_being_split->getChildEntry(entryA_index);
minCount = 0;
int entryB_index = 0; // record the seedB kernel index.
for (int i=0;i<VNode::MAX_CHILD_NUM;i++)
{
int currentCount = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
if (i != entryA_index && minCount <= currentCount)
{
minCount = currentCount;
entryB_index = i;
}
}
entryB = _p_node_being_split->getChildEntry(entryB_index);
// AEntryIndex: the entry index near seedA.
// BEntryIndex: the entry index near seedB.
std::vector<int> entryIndex_nearA, entryIndex_nearB;
entryIndex_nearA.clear();
entryIndex_nearB.clear();
entryIndex_nearA.push_back(entryA_index);
entryIndex_nearB.push_back(entryB_index);
/* just tmp variables, for more readibility */
int nearA_max_size, nearB_max_size;
bool nearA_tooSmall, nearB_tooSmall;
for (int i=0;i<VNode::MAX_CHILD_NUM;i++)
{
if (i == entryA_index || i == entryB_index) continue;
/* should guarantee that each new node has at least MIN_CHILD_NUM children. */
nearA_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearB.size();
nearA_tooSmall = (nearA_max_size <= VNode::MIN_CHILD_NUM);
if (nearA_tooSmall)
{
for (;i<VNode::MAX_CHILD_NUM;i++)
{
if (i == entryA_index || i == entryB_index) continue;
entryIndex_nearA.push_back(i);
}
break;
}
nearB_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearA.size();
nearB_tooSmall = (nearB_max_size <= VNode::MIN_CHILD_NUM);
if (nearB_tooSmall)
{
for (;i<VNode::MAX_CHILD_NUM;i++)
{
if (i == entryA_index || i == entryB_index) continue;
entryIndex_nearB.push_back(i);
}
break;
}
/* calculate the distance from
* the i-th child entry signature to seedA(or seedB).*/
/*debug target 1*/
int disToSeedA = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
//.........这里部分代码省略.........