本文整理汇总了C++中UMat类的典型用法代码示例。如果您正苦于以下问题:C++ UMat类的具体用法?C++ UMat怎么用?C++ UMat使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了UMat类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: convertToVASurface
void convertToVASurface(InputArray src, VASurfaceID surface, Size size)
{
(void)src; (void)surface; (void)size;
#if !defined(HAVE_VAAPI)
NO_VAAPI_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
NO_OPENCL_SUPPORT_ERROR;
#else
if (!contextInitialized)
CV_Error(cv::Error::OpenCLInitError, "OpenCL: Context for VA-API interop hasn't been created");
const int stype = CV_8UC4;
int srcType = src.type();
CV_Assert(srcType == stype);
Size srcSize = src.size();
CV_Assert(srcSize.width == size.width && srcSize.height == size.height);
UMat u = src.getUMat();
// TODO Add support for roi
CV_Assert(u.offset == 0);
CV_Assert(u.isContinuous());
cl_mem clBuffer = (cl_mem)u.handle(ACCESS_READ);
using namespace cv::ocl;
Context& ctx = Context::getDefault();
cl_context context = (cl_context)ctx.ptr();
cl_int status = 0;
cl_mem clImageY = clCreateFromVA_APIMediaSurfaceINTEL(context, CL_MEM_WRITE_ONLY, &surface, 0, &status);
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clCreateFromVA_APIMediaSurfaceINTEL failed (Y plane)");
cl_mem clImageUV = clCreateFromVA_APIMediaSurfaceINTEL(context, CL_MEM_WRITE_ONLY, &surface, 1, &status);
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clCreateFromVA_APIMediaSurfaceINTEL failed (UV plane)");
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
cl_mem images[2] = { clImageY, clImageUV };
status = clEnqueueAcquireVA_APIMediaSurfacesINTEL(q, 2, images, 0, NULL, NULL);
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clEnqueueAcquireVA_APIMediaSurfacesINTEL failed");
if (!ocl::ocl_convert_bgr_to_nv12(clBuffer, (int)u.step[0], u.cols, u.rows, clImageY, clImageUV))
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: ocl_convert_bgr_to_nv12 failed");
clEnqueueReleaseVA_APIMediaSurfacesINTEL(q, 2, images, 0, NULL, NULL);
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clEnqueueReleaseVA_APIMediaSurfacesINTEL failed");
status = clFinish(q); // TODO Use events
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clFinish failed");
status = clReleaseMemObject(clImageY); // TODO RAII
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clReleaseMem failed (Y plane)");
status = clReleaseMemObject(clImageUV);
if (status != CL_SUCCESS)
CV_Error(cv::Error::OpenCLApiCallError, "OpenCL: clReleaseMem failed (UV plane)");
#endif
}
示例2: oclk_max_pool_forward
bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
UMat& top,
UMat& top_mask)
{
bool ret = true;
size_t global[] = { 128 * 128 };
size_t local[] = { 128 };
// support 2D case
switch (pool_method_)
{
case LIBDNN_POOLING_METHOD_MAX:
{
bool haveMask = !top_mask.empty();
ocl::Kernel oclk_max_pool_forward(
haveMask ? CL_KERNEL_SELECT("max_pool_forward_mask") : CL_KERNEL_SELECT("max_pool_forward"),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d"
" -D PAD_W=%d -D PAD_H=%d%s",
kernel_w_, kernel_h_,
stride_w_, stride_h_,
pad_w_, pad_h_,
haveMask ? " -D HAVE_MASK=1" : ""
));
if (oclk_max_pool_forward.empty())
return false;
oclk_max_pool_forward.args(
count_,
ocl::KernelArg::PtrReadOnly(bottom),
channels_,
height_,
width_,
pooled_height_,
pooled_width_,
ocl::KernelArg::PtrWriteOnly(top),
ocl::KernelArg::PtrWriteOnly(top_mask)
);
ret = oclk_max_pool_forward.run(1, global, local, false);
}
break;
case LIBDNN_POOLING_METHOD_AVE:
{
CV_Assert(top_mask.empty());
ocl::Kernel oclk_ave_pool_forward(CL_KERNEL_SELECT("ave_pool_forward"),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d"
" -D PAD_W=%d -D PAD_H=%d%s",
kernel_w_, kernel_h_,
stride_w_, stride_h_,
pad_w_, pad_h_,
avePoolPaddedArea ? " -D AVE_POOL_PADDING_AREA" : ""
));
if (oclk_ave_pool_forward.empty())
return false;
oclk_ave_pool_forward.args(
count_,
ocl::KernelArg::PtrReadOnly(bottom),
channels_,
height_,
width_,
pooled_height_,
pooled_width_,
ocl::KernelArg::PtrWriteOnly(top)
);
ret = oclk_ave_pool_forward.run(1, global, local, false);
}
break;
case LIBDNN_POOLING_METHOD_STO:
{
CV_Assert(top_mask.empty());
ocl::Kernel oclk_sto_pool_forward(CL_KERNEL_SELECT("sto_pool_forward_test"),
ocl::dnn::ocl4dnn_pooling_oclsrc,
format("-D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
" -D STRIDE_W=%d -D STRIDE_H=%d",
kernel_w_, kernel_h_,
stride_w_, stride_h_
));
if (oclk_sto_pool_forward.empty())
return false;
oclk_sto_pool_forward.args(
count_,
ocl::KernelArg::PtrReadOnly(bottom),
channels_,
height_,
width_,
pooled_height_,
pooled_width_,
//.........这里部分代码省略.........
示例3: UMatToVector
void UMatToVector(const UMat & um, std::vector<Point2f> & v) const
{
v.resize(um.size().area());
um.copyTo(Mat(um.size(), CV_32FC2, &v[0]));
}
示例4: main
int main(int argc, char** argv)
{
const char* keys =
"{ i input | | specify input image }"
"{ h help | | print help message }";
cv::CommandLineParser args(argc, argv, keys);
if (args.has("help"))
{
cout << "Usage : " << argv[0] << " [options]" << endl;
cout << "Available options:" << endl;
args.printMessage();
return EXIT_SUCCESS;
}
cv::ocl::Context ctx = cv::ocl::Context::getDefault();
if (!ctx.ptr())
{
cerr << "OpenCL is not available" << endl;
return 1;
}
cv::ocl::Device device = cv::ocl::Device::getDefault();
if (!device.compilerAvailable())
{
cerr << "OpenCL compiler is not available" << endl;
return 1;
}
UMat src;
{
string image_file = args.get<string>("i");
if (!image_file.empty())
{
Mat image = imread(image_file);
if (image.empty())
{
cout << "error read image: " << image_file << endl;
return 1;
}
cvtColor(image, src, COLOR_BGR2GRAY);
}
else
{
Mat frame(cv::Size(640, 480), CV_8U, Scalar::all(128));
Point p(frame.cols / 2, frame.rows / 2);
line(frame, Point(0, frame.rows / 2), Point(frame.cols, frame.rows / 2), 1);
circle(frame, p, 200, Scalar(32, 32, 32), 8, LINE_AA);
string str = "OpenCL";
int baseLine = 0;
Size box = getTextSize(str, FONT_HERSHEY_COMPLEX, 2, 5, &baseLine);
putText(frame, str, Point((frame.cols - box.width) / 2, (frame.rows - box.height) / 2 + baseLine),
FONT_HERSHEY_COMPLEX, 2, Scalar(255, 255, 255), 5, LINE_AA);
frame.copyTo(src);
}
}
cv::String module_name; // empty to disable OpenCL cache
{
cout << "OpenCL program source: " << endl;
cout << "======================================================================================================" << endl;
cout << opencl_kernel_src << endl;
cout << "======================================================================================================" << endl;
//! [Define OpenCL program source]
cv::ocl::ProgramSource source(module_name, "simple", opencl_kernel_src, "");
//! [Define OpenCL program source]
//! [Compile/build OpenCL for current OpenCL device]
cv::String errmsg;
cv::ocl::Program program(source, "", errmsg);
if (program.ptr() == NULL)
{
cerr << "Can't compile OpenCL program:" << endl << errmsg << endl;
return 1;
}
//! [Compile/build OpenCL for current OpenCL device]
if (!errmsg.empty())
{
cout << "OpenCL program build log:" << endl << errmsg << endl;
}
//! [Get OpenCL kernel by name]
cv::ocl::Kernel k("magnutude_filter_8u", program);
if (k.empty())
{
cerr << "Can't get OpenCL kernel" << endl;
return 1;
}
//! [Get OpenCL kernel by name]
UMat result(src.size(), CV_8UC1);
//! [Define kernel parameters and run]
size_t globalSize[2] = {(size_t)src.cols, (size_t)src.rows};
size_t localSize[2] = {8, 8};
bool executionResult = k
.args(
//.........这里部分代码省略.........
示例5: highResSize
bool BTVL1_Base::ocl_process(InputArrayOfArrays _src, OutputArray _dst, InputArrayOfArrays _forwardMotions,
InputArrayOfArrays _backwardMotions, int baseIdx)
{
std::vector<UMat> & src = *(std::vector<UMat> *)_src.getObj(),
& forwardMotions = *(std::vector<UMat> *)_forwardMotions.getObj(),
& backwardMotions = *(std::vector<UMat> *)_backwardMotions.getObj();
// update blur filter and btv weights
if (!filter_ || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
{
filter_ = createGaussianFilter(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
curBlurKernelSize_ = blurKernelSize_;
curBlurSigma_ = blurSigma_;
curSrcType_ = src[0].type();
}
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
{
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
Mat(btvWeights_, true).copyTo(ubtvWeights_);
curBtvKernelSize_ = btvKernelSize_;
curAlpha_ = alpha_;
}
// calc high res motions
calcRelativeMotions(forwardMotions, backwardMotions, ulowResForwardMotions_, ulowResBackwardMotions_, baseIdx, src[0].size());
upscaleMotions(ulowResForwardMotions_, uhighResForwardMotions_, scale_);
upscaleMotions(ulowResBackwardMotions_, uhighResBackwardMotions_, scale_);
uforwardMaps_.resize(uhighResForwardMotions_.size());
ubackwardMaps_.resize(uhighResForwardMotions_.size());
for (size_t i = 0; i < uhighResForwardMotions_.size(); ++i)
buildMotionMaps(uhighResForwardMotions_[i], uhighResBackwardMotions_[i], uforwardMaps_[i], ubackwardMaps_[i]);
// initial estimation
const Size lowResSize = src[0].size();
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);
resize(src[baseIdx], uhighRes_, highResSize, 0, 0, INTER_LINEAR); // TODO
// iterations
udiffTerm_.create(highResSize, uhighRes_.type());
ua_.create(highResSize, uhighRes_.type());
ub_.create(highResSize, uhighRes_.type());
uc_.create(lowResSize, uhighRes_.type());
for (int i = 0; i < iterations_; ++i)
{
udiffTerm_.setTo(Scalar::all(0));
for (size_t k = 0; k < src.size(); ++k)
{
// a = M * Ih
remap(uhighRes_, ua_, ubackwardMaps_[k], noArray(), INTER_NEAREST);
// b = HM * Ih
GaussianBlur(ua_, ub_, Size(blurKernelSize_, blurKernelSize_), blurSigma_);
// c = DHM * Ih
resize(ub_, uc_, lowResSize, 0, 0, INTER_NEAREST);
diffSign(src[k], uc_, uc_);
// a = Dt * diff
upscale(uc_, ua_, scale_);
// b = HtDt * diff
GaussianBlur(ua_, ub_, Size(blurKernelSize_, blurKernelSize_), blurSigma_);
// a = MtHtDt * diff
remap(ub_, ua_, uforwardMaps_[k], noArray(), INTER_NEAREST);
add(udiffTerm_, ua_, udiffTerm_);
}
if (lambda_ > 0)
{
calcBtvRegularization(uhighRes_, uregTerm_, btvKernelSize_, btvWeights_, ubtvWeights_);
addWeighted(udiffTerm_, 1.0, uregTerm_, -lambda_, 0.0, udiffTerm_);
}
addWeighted(uhighRes_, 1.0, udiffTerm_, tau_, 0.0, uhighRes_);
}
Rect inner(btvKernelSize_, btvKernelSize_, uhighRes_.cols - 2 * btvKernelSize_, uhighRes_.rows - 2 * btvKernelSize_);
uhighRes_(inner).copyTo(_dst);
return true;
}
示例6: get
static const Mat get(const UMat& m) { return m.getMat(ACCESS_READ); }
示例7: CV_INSTRUMENT_REGION
int cv::meanShift( InputArray _probImage, Rect& window, TermCriteria criteria )
{
CV_INSTRUMENT_REGION()
Size size;
int cn;
Mat mat;
UMat umat;
bool isUMat = _probImage.isUMat();
if (isUMat)
umat = _probImage.getUMat(), cn = umat.channels(), size = umat.size();
else
mat = _probImage.getMat(), cn = mat.channels(), size = mat.size();
Rect cur_rect = window;
CV_Assert( cn == 1 );
if( window.height <= 0 || window.width <= 0 )
CV_Error( Error::StsBadArg, "Input window has non-positive sizes" );
window = window & Rect(0, 0, size.width, size.height);
double eps = (criteria.type & TermCriteria::EPS) ? std::max(criteria.epsilon, 0.) : 1.;
eps = cvRound(eps*eps);
int i, niters = (criteria.type & TermCriteria::MAX_ITER) ? std::max(criteria.maxCount, 1) : 100;
for( i = 0; i < niters; i++ )
{
cur_rect = cur_rect & Rect(0, 0, size.width, size.height);
if( cur_rect == Rect() )
{
cur_rect.x = size.width/2;
cur_rect.y = size.height/2;
}
cur_rect.width = std::max(cur_rect.width, 1);
cur_rect.height = std::max(cur_rect.height, 1);
Moments m = isUMat ? moments(umat(cur_rect)) : moments(mat(cur_rect));
// Calculating center of mass
if( fabs(m.m00) < DBL_EPSILON )
break;
int dx = cvRound( m.m10/m.m00 - window.width*0.5 );
int dy = cvRound( m.m01/m.m00 - window.height*0.5 );
int nx = std::min(std::max(cur_rect.x + dx, 0), size.width - cur_rect.width);
int ny = std::min(std::max(cur_rect.y + dy, 0), size.height - cur_rect.height);
dx = nx - cur_rect.x;
dy = ny - cur_rect.y;
cur_rect.x = nx;
cur_rect.y = ny;
// Check for coverage centers mass & window
if( dx*dx + dy*dy < eps )
break;
}
window = cur_rect;
return i;
}
示例8: main
int main(int argc, char** argv)
{
const char* keys =
"{ i input | ../data/pic1.png | specify input image }"
"{ o output | squares_output.jpg | specify output save path}"
"{ h help | | print help message }"
"{ m cpu_mode | | run without OpenCL }";
CommandLineParser cmd(argc, argv, keys);
if(cmd.has("help"))
{
cout << "Usage : squares [options]" << endl;
cout << "Available options:" << endl;
cmd.printMessage();
return EXIT_SUCCESS;
}
if (cmd.has("cpu_mode"))
{
ocl::setUseOpenCL(false);
std::cout << "OpenCL was disabled" << std::endl;
}
string inputName = cmd.get<string>("i");
string outfile = cmd.get<string>("o");
int iterations = 10;
namedWindow( wndname, WINDOW_AUTOSIZE );
vector<vector<Point> > squares;
UMat image;
imread(inputName, 1).copyTo(image);
if( image.empty() )
{
cout << "Couldn't load " << inputName << endl;
cmd.printMessage();
return EXIT_FAILURE;
}
int j = iterations;
int64 t_cpp = 0;
//warm-ups
cout << "warming up ..." << endl;
findSquares(image, squares);
do
{
int64 t_start = cv::getTickCount();
findSquares(image, squares);
t_cpp += cv::getTickCount() - t_start;
t_start = cv::getTickCount();
cout << "run loop: " << j << endl;
}
while(--j);
cout << "average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
UMat result = drawSquaresBoth(image, squares);
imshow(wndname, result);
imwrite(outfile, result);
waitKey(0);
return EXIT_SUCCESS;
}
示例9: ocl_Canny
static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputArray _dst, float low_thresh, float high_thresh,
int aperture_size, bool L2gradient, int cn, const Size & size)
{
CV_INSTRUMENT_REGION_OPENCL()
UMat map;
const ocl::Device &dev = ocl::Device::getDefault();
int max_wg_size = (int)dev.maxWorkGroupSize();
int lSizeX = 32;
int lSizeY = max_wg_size / 32;
if (lSizeY == 0)
{
lSizeX = 16;
lSizeY = max_wg_size / 16;
}
if (lSizeY == 0)
{
lSizeY = 1;
}
if (aperture_size == 7)
{
low_thresh = low_thresh / 16.0f;
high_thresh = high_thresh / 16.0f;
}
if (L2gradient)
{
low_thresh = std::min(32767.0f, low_thresh);
high_thresh = std::min(32767.0f, high_thresh);
if (low_thresh > 0)
low_thresh *= low_thresh;
if (high_thresh > 0)
high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh), high = cvFloor(high_thresh);
if (!useCustomDeriv &&
aperture_size == 3 && !_src.isSubmatrix())
{
/*
stage1_with_sobel:
Sobel operator
Calc magnitudes
Non maxima suppression
Double thresholding
*/
char cvt[40];
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, ocl::memopTypeToStr(_src.depth()),
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt),
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)),
lSizeX, lSizeY,
L2gradient ? " -D L2GRAD" : ""));
if (with_sobel.empty())
return false;
UMat src = _src.getUMat();
map.create(size, CV_32S);
with_sobel.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(map),
(float) low, (float) high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!with_sobel.run(2, globalsize, localsize, false))
return false;
}
else
{
/*
stage1_without_sobel:
Calc magnitudes
Non maxima suppression
Double thresholding
*/
double scale = 1.0;
if (aperture_size == 7)
{
scale = 1 / 16.0;
}
UMat dx, dy;
if (!useCustomDeriv)
{
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE);
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE);
}
else
{
dx = dx_;
dy = dy_;
}
//.........这里部分代码省略.........
示例10: CV_TRACE_FUNCTION
void ICPImpl::getAb<UMat>(const UMat& oldPts, const UMat& oldNrm, const UMat& newPts, const UMat& newNrm,
Affine3f pose, int level, Matx66f &A, Vec6f &b) const
{
CV_TRACE_FUNCTION();
Size oldSize = oldPts.size(), newSize = newPts.size();
CV_Assert(oldSize == oldNrm.size());
CV_Assert(newSize == newNrm.size());
// calculate 1x7 vector ab to produce b and upper triangle of A:
// [A|b] = ab*(ab^t)
// and then reduce it across work groups
cv::String errorStr;
ocl::ProgramSource source = ocl::rgbd::icp_oclsrc;
cv::String options = "-cl-fast-relaxed-math -cl-mad-enable";
ocl::Kernel k;
k.create("getAb", source, options, &errorStr);
if(k.empty())
throw std::runtime_error("Failed to create kernel: " + errorStr);
size_t globalSize[2];
globalSize[0] = (size_t)newPts.cols;
globalSize[1] = (size_t)newPts.rows;
const ocl::Device& device = ocl::Device::getDefault();
// workaround for Intel's integrated GPU
size_t wgsLimit = device.isIntel() ? 64 : device.maxWorkGroupSize();
size_t memSize = device.localMemSize();
// local memory should keep upperTriangles for all threads in group for reduce
const size_t ltsz = UTSIZE*sizeof(float);
const size_t lcols = 32;
size_t lrows = min(memSize/ltsz, wgsLimit)/lcols;
// round lrows down to 2^n
lrows = roundDownPow2(lrows);
size_t localSize[2] = {lcols, lrows};
Size ngroups((int)divUp(globalSize[0], (unsigned int)localSize[0]),
(int)divUp(globalSize[1], (unsigned int)localSize[1]));
// size of local buffer for group-wide reduce
size_t lsz = localSize[0]*localSize[1]*ltsz;
Intr::Projector proj = intrinsics.scale(level).makeProjector();
Vec2f fxy(proj.fx, proj.fy), cxy(proj.cx, proj.cy);
UMat& groupedSumGpu = groupedSumBuffers[level];
groupedSumGpu.create(Size(ngroups.width*UTSIZE, ngroups.height),
CV_32F);
groupedSumGpu.setTo(0);
// TODO: optimization possible:
// samplers instead of oldPts/oldNrm (mask needed)
k.args(ocl::KernelArg::ReadOnlyNoSize(oldPts),
ocl::KernelArg::ReadOnlyNoSize(oldNrm),
oldSize,
ocl::KernelArg::ReadOnlyNoSize(newPts),
ocl::KernelArg::ReadOnlyNoSize(newNrm),
newSize,
ocl::KernelArg::Constant(pose.matrix.val,
sizeof(pose.matrix.val)),
fxy.val, cxy.val,
distanceThreshold*distanceThreshold,
cos(angleThreshold),
//TODO: replace by KernelArg::Local(lsz)
ocl::KernelArg(ocl::KernelArg::LOCAL, 0, 1, 1, 0, lsz),
ocl::KernelArg::WriteOnlyNoSize(groupedSumGpu)
);
if(!k.run(2, globalSize, localSize, true))
throw std::runtime_error("Failed to run kernel");
float upperTriangle[UTSIZE];
for(int i = 0; i < UTSIZE; i++)
upperTriangle[i] = 0;
Mat groupedSumCpu = groupedSumGpu.getMat(ACCESS_READ);
for(int y = 0; y < ngroups.height; y++)
{
const float* rowr = groupedSumCpu.ptr<float>(y);
for(int x = 0; x < ngroups.width; x++)
{
const float* p = rowr + x*UTSIZE;
for(int j = 0; j < UTSIZE; j++)
{
upperTriangle[j] += p[j];
}
}
}
groupedSumCpu.release();
ABtype sumAB = ABtype::zeros();
int pos = 0;
for(int i = 0; i < 6; i++)
{
for(int j = i; j < 7; j++)
{
sumAB(i, j) = upperTriangle[pos++];
}
//.........这里部分代码省略.........
示例11: LOGLN
Mosaic::Status Mosaic::composePanorama(InputArrayOfArrays images, OutputArray pano) {
LOGLN("Warping images (auxiliary)... ");
std::vector<UMat> imgs;
images.getUMatVector(imgs);
if (!imgs.empty()) {
CV_Assert(imgs.size() == imgs_.size());
UMat img;
seam_est_imgs_.resize(imgs.size());
for (size_t i = 0; i < imgs.size(); ++i) {
imgs_[i] = imgs[i];
resize(imgs[i], img, Size(), seam_scale_, seam_scale_);
seam_est_imgs_[i] = img.clone();
}
std::vector<UMat> seam_est_imgs_subset;
std::vector<UMat> imgs_subset;
for (size_t i = 0; i < indices_.size(); ++i) {
imgs_subset.push_back(imgs_[indices_[i]]);
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
}
seam_est_imgs_ = seam_est_imgs_subset;
imgs_ = imgs_subset;
}
UMat pano_;
#if ENABLE_LOG
int64 t = getTickCount();
#endif
std::vector<Point> corners(imgs_.size());
std::vector<UMat> masks_warped(imgs_.size());
std::vector<UMat> images_warped(imgs_.size());
std::vector<Size> sizes(imgs_.size());
std::vector<UMat> masks(imgs_.size());
// Prepare image masks
for (size_t i = 0; i < imgs_.size(); ++i) {
masks[i].create(seam_est_imgs_[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr<detail::TranslationWarper> w = warper_->create(float(warped_image_scale_ * seam_work_aspect_));
for (size_t i = 0; i < imgs_.size(); ++i) {
Mat_<float> K;
cameras_[i].K().convertTo(K, CV_32F);
K(0, 0) *= (float) seam_work_aspect_;
K(0, 2) *= (float) seam_work_aspect_;
K(1, 1) *= (float) seam_work_aspect_;
K(1, 2) *= (float) seam_work_aspect_;
corners[i] = w->warp(seam_est_imgs_[i], K, cameras_[i].R, cameras_[i].t, INTER_LANCZOS4, BORDER_REFLECT,
images_warped[i]);
sizes[i] = images_warped[i].size();
w->warp(masks[i], K, cameras_[i].R, cameras_[i].t, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
std::vector<UMat> images_warped_f(imgs_.size());
for (size_t i = 0; i < imgs_.size(); ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Find seams
exposure_comp_->feed(corners, images_warped, masks_warped);
seam_finder_->find(images_warped_f, corners, masks_warped);
// Release unused memory
seam_est_imgs_.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
#if ENABLE_LOG
t = getTickCount();
#endif
UMat img_warped, img_warped_s;
UMat dilated_mask, seam_mask, mask, mask_warped;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
bool is_blender_prepared = false;
double compose_scale = 1;
bool is_compose_scale_set = false;
UMat full_img, img;
for (size_t img_idx = 0; img_idx < imgs_.size(); ++img_idx) {
LOGLN("Compositing image #" << indices_[img_idx] + 1);
#if ENABLE_LOG
int64 compositing_t = getTickCount();
//.........这里部分代码省略.........
示例12: ocl_Laplacian5
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
const Mat & kd, const Mat & ks, double scale, double delta,
int borderType, int depth, int ddepth)
{
const size_t tileSizeX = 16;
const size_t tileSizeYmin = 8;
const ocl::Device dev = ocl::Device::getDefault();
int stype = _src.type();
int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), esz = CV_ELEM_SIZE(stype);
bool doubleSupport = dev.doubleFPConfig() > 0;
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
return false;
Mat kernelX = kd.reshape(1, 1);
if (kernelX.cols % 2 != 1)
return false;
Mat kernelY = ks.reshape(1, 1);
if (kernelY.cols % 2 != 1)
return false;
CV_Assert(kernelX.cols == kernelY.cols);
size_t wgs = dev.maxWorkGroupSize();
size_t lmsz = dev.localMemSize();
size_t src_step = _src.step(), src_offset = _src.offset();
const size_t tileSizeYmax = wgs / tileSizeX;
// workaround for Nvidia: 3 channel vector type takes 4*elem_size in local memory
int loc_mem_cn = dev.vendorID() == ocl::Device::VENDOR_NVIDIA && cn == 3 ? 4 : cn;
if (((src_offset % src_step) % esz == 0) &&
(
(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE) ||
((borderType == BORDER_REFLECT || borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101) &&
(_src.cols() >= (int) (kernelX.cols + tileSizeX) && _src.rows() >= (int) (kernelY.cols + tileSizeYmax)))
) &&
(tileSizeX * tileSizeYmin <= wgs) &&
(LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeYmin, kernelX.cols, loc_mem_cn * 4) <= lmsz)
)
{
Size size = _src.size(), wholeSize;
Point origin;
int dtype = CV_MAKE_TYPE(ddepth, cn);
int wdepth = CV_32F;
size_t tileSizeY = tileSizeYmax;
while ((tileSizeX * tileSizeY > wgs) || (LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeY, kernelX.cols, loc_mem_cn * 4) > lmsz))
{
tileSizeY /= 2;
}
size_t lt2[2] = { tileSizeX, tileSizeY};
size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] };
char cvt[2][40];
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
"BORDER_REFLECT_101" };
String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUS=%d%s%s"
" -D convertToWT=%s -D convertToDT=%s"
" -D %s -D srcT1=%s -D dstT1=%s -D WT1=%s"
" -D srcT=%s -D dstT=%s -D WT=%s"
" -D CN=%d ",
(int)lt2[0], (int)lt2[1], kernelX.cols / 2,
ocl::kernelToStr(kernelX, wdepth, "KERNEL_MATRIX_X").c_str(),
ocl::kernelToStr(kernelY, wdepth, "KERNEL_MATRIX_Y").c_str(),
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
borderMap[borderType],
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), ocl::typeToStr(wdepth),
ocl::typeToStr(CV_MAKETYPE(sdepth, cn)),
ocl::typeToStr(CV_MAKETYPE(ddepth, cn)),
ocl::typeToStr(CV_MAKETYPE(wdepth, cn)),
cn);
ocl::Kernel k("laplacian", ocl::imgproc::laplacian5_oclsrc, opts);
if (k.empty())
return false;
UMat src = _src.getUMat();
_dst.create(size, dtype);
UMat dst = _dst.getUMat();
int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
int src_offset_y = static_cast<int>(src_offset / src_step);
src.locateROI(wholeSize, origin);
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst),
static_cast<float>(scale), static_cast<float>(delta));
return k.run(2, gt2, lt2, false);
}
int iscale = cvRound(scale), idelta = cvRound(delta);
bool floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
int wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
if (!doubleSupport && wdepth == CV_64F)
return false;
//.........这里部分代码省略.........
示例13: main
int main(int argc, char** argv)
{
CV_TRACE_FUNCTION();
cv::CommandLineParser parser(argc, argv,
"{help h ? | | help message}"
"{n | 100 | number of frames to process }"
"{@video | 0 | video filename or cameraID }"
);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
VideoCapture capture;
std::string video = parser.get<string>("@video");
if (video.size() == 1 && isdigit(video[0]))
capture.open(parser.get<int>("@video"));
else
capture.open(video);
int nframes = 0;
if (capture.isOpened())
{
nframes = (int)capture.get(CAP_PROP_FRAME_COUNT);
cout << "Video " << video <<
": width=" << capture.get(CAP_PROP_FRAME_WIDTH) <<
", height=" << capture.get(CAP_PROP_FRAME_HEIGHT) <<
", nframes=" << nframes << endl;
}
else
{
cout << "Could not initialize video capturing...\n";
return -1;
}
int N = parser.get<int>("n");
if (nframes > 0 && N > nframes)
N = nframes;
cout << "Start processing..." << endl
<< "Press ESC key to terminate" << endl;
UMat frame;
for (int i = 0; N > 0 ? (i < N) : true; i++)
{
CV_TRACE_REGION("FRAME"); // OpenCV Trace macro for named "scope" region
{
CV_TRACE_REGION("read");
capture.read(frame);
if (frame.empty())
{
cerr << "Can't capture frame: " << i << std::endl;
break;
}
// OpenCV Trace macro for NEXT named region in the same C++ scope
// Previous "read" region will be marked complete on this line.
// Use this to eliminate unnecessary curly braces.
CV_TRACE_REGION_NEXT("process");
process_frame(frame);
CV_TRACE_REGION_NEXT("delay");
if (waitKey(1) == 27/*ESC*/)
break;
}
}
return 0;
}
示例14: locateROI
UMat Mat::getUMat(int accessFlags, UMatUsageFlags usageFlags) const
{
UMat hdr;
if(!data)
return hdr;
if (data != datastart)
{
Size wholeSize;
Point ofs;
locateROI(wholeSize, ofs);
Size sz(cols, rows);
if (ofs.x != 0 || ofs.y != 0)
{
Mat src = *this;
int dtop = ofs.y;
int dbottom = wholeSize.height - src.rows - ofs.y;
int dleft = ofs.x;
int dright = wholeSize.width - src.cols - ofs.x;
src.adjustROI(dtop, dbottom, dleft, dright);
return src.getUMat(accessFlags, usageFlags)(cv::Rect(ofs.x, ofs.y, sz.width, sz.height));
}
}
CV_Assert(data == datastart);
accessFlags |= ACCESS_RW;
UMatData* new_u = NULL;
{
MatAllocator *a = allocator, *a0 = getDefaultAllocator();
if(!a)
a = a0;
new_u = a->allocate(dims, size.p, type(), data, step.p, accessFlags, usageFlags);
}
bool allocated = false;
try
{
allocated = UMat::getStdAllocator()->allocate(new_u, accessFlags, usageFlags);
}
catch (const cv::Exception& e)
{
fprintf(stderr, "Exception: %s\n", e.what());
}
if (!allocated)
{
allocated = getDefaultAllocator()->allocate(new_u, accessFlags, usageFlags);
CV_Assert(allocated);
}
if (u != NULL)
{
#ifdef HAVE_OPENCL
if (ocl::useOpenCL() && new_u->currAllocator == ocl::getOpenCLAllocator())
{
CV_Assert(new_u->tempUMat());
}
#endif
new_u->originalUMatData = u;
CV_XADD(&(u->refcount), 1);
CV_XADD(&(u->urefcount), 1);
}
hdr.flags = flags;
setSize(hdr, dims, size.p, step.p);
finalizeHdr(hdr);
hdr.u = new_u;
hdr.offset = 0; //data - datastart;
hdr.addref();
return hdr;
}
示例15: CV_Assert
/* dst = src */
void Mat::copyTo( OutputArray _dst ) const
{
int dtype = _dst.type();
if( _dst.fixedType() && dtype != type() )
{
CV_Assert( channels() == CV_MAT_CN(dtype) );
convertTo( _dst, dtype );
return;
}
if( empty() )
{
_dst.release();
return;
}
if( _dst.isUMat() )
{
_dst.create( dims, size.p, type() );
UMat dst = _dst.getUMat();
size_t i, sz[CV_MAX_DIM], dstofs[CV_MAX_DIM], esz = elemSize();
for( i = 0; i < (size_t)dims; i++ )
sz[i] = size.p[i];
sz[dims-1] *= esz;
dst.ndoffset(dstofs);
dstofs[dims-1] *= esz;
dst.u->currAllocator->upload(dst.u, data, dims, sz, dstofs, dst.step.p, step.p);
return;
}
if( dims <= 2 )
{
_dst.create( rows, cols, type() );
Mat dst = _dst.getMat();
if( data == dst.data )
return;
if( rows > 0 && cols > 0 )
{
const uchar* sptr = data;
uchar* dptr = dst.data;
Size sz = getContinuousSize(*this, dst);
size_t len = sz.width*elemSize();
for( ; sz.height--; sptr += step, dptr += dst.step )
memcpy( dptr, sptr, len );
}
return;
}
_dst.create( dims, size, type() );
Mat dst = _dst.getMat();
if( data == dst.data )
return;
if( total() != 0 )
{
const Mat* arrays[] = { this, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t sz = it.size*elemSize();
for( size_t i = 0; i < it.nplanes; i++, ++it )
memcpy(ptrs[1], ptrs[0], sz);
}
}