本文整理汇总了C++中Tree::GetRight方法的典型用法代码示例。如果您正苦于以下问题:C++ Tree::GetRight方法的具体用法?C++ Tree::GetRight怎么用?C++ Tree::GetRight使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Tree
的用法示例。
在下文中一共展示了Tree::GetRight方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ClusterBySubfamCount_Iteration
static void ClusterBySubfamCount_Iteration(const Tree &tree, unsigned Subfams[],
unsigned uCount)
{
// Find highest child node of current set of subfamilies.
double dHighestHeight = -1e20;
int iParentSubscript = -1;
for (int n = 0; n < (int) uCount; ++n)
{
const unsigned uNodeIndex = Subfams[n];
if (tree.IsLeaf(uNodeIndex))
continue;
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const double dHeightLeft = tree.GetNodeHeight(uLeft);
if (dHeightLeft > dHighestHeight)
{
dHighestHeight = dHeightLeft;
iParentSubscript = n;
}
const unsigned uRight = tree.GetRight(uNodeIndex);
const double dHeightRight = tree.GetNodeHeight(uRight);
if (dHeightRight > dHighestHeight)
{
dHighestHeight = dHeightRight;
iParentSubscript = n;
}
}
if (-1 == iParentSubscript)
Quit("CBSFCIter: failed to find highest child");
const unsigned uNodeIndex = Subfams[iParentSubscript];
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const unsigned uRight = tree.GetRight(uNodeIndex);
// Delete parent by replacing with left child
Subfams[iParentSubscript] = uLeft;
// Append right child to list
Subfams[uCount] = uRight;
#if TRACE
{
Log("Iter %3u:", uCount);
for (unsigned n = 0; n < uCount; ++n)
Log(" %u", Subfams[n]);
Log("\n");
}
#endif
}
示例2: SubFamRecurse
static unsigned SubFamRecurse(const Tree &tree, unsigned uNodeIndex, unsigned uMaxLeafCount,
unsigned SubFams[], unsigned &uSubFamCount)
{
if (tree.IsLeaf(uNodeIndex))
return 1;
unsigned uLeft = tree.GetLeft(uNodeIndex);
unsigned uRight = tree.GetRight(uNodeIndex);
unsigned uLeftCount = SubFamRecurse(tree, uLeft, uMaxLeafCount, SubFams, uSubFamCount);
unsigned uRightCount = SubFamRecurse(tree, uRight, uMaxLeafCount, SubFams, uSubFamCount);
unsigned uLeafCount = uLeftCount + uRightCount;
if (uLeftCount + uRightCount > uMaxLeafCount)
{
if (uLeftCount <= uMaxLeafCount)
SubFams[uSubFamCount++] = uLeft;
if (uRightCount <= uMaxLeafCount)
SubFams[uSubFamCount++] = uRight;
}
else if (tree.IsRoot(uNodeIndex))
{
if (uSubFamCount != 0)
Quit("Error in SubFamRecurse");
SubFams[uSubFamCount++] = uNodeIndex;
}
return uLeafCount;
}
示例3: SetInFam
static void SetInFam(const Tree &tree, unsigned uNodeIndex, bool NodeInSubFam[])
{
if (tree.IsLeaf(uNodeIndex))
return;
unsigned uLeft = tree.GetLeft(uNodeIndex);
unsigned uRight = tree.GetRight(uNodeIndex);
NodeInSubFam[uLeft] = true;
NodeInSubFam[uRight] = true;
SetInFam(tree, uLeft, NodeInSubFam);
SetInFam(tree, uRight, NodeInSubFam);
}
示例4: GetLeavesRecurse
static void GetLeavesRecurse(const Tree &tree, unsigned uNodeIndex,
unsigned Leaves[], unsigned &uLeafCount /* in-out */)
{
if (tree.IsLeaf(uNodeIndex))
{
Leaves[uLeafCount] = uNodeIndex;
++uLeafCount;
return;
}
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const unsigned uRight = tree.GetRight(uNodeIndex);
GetLeavesRecurse(tree, uLeft, Leaves, uLeafCount);
GetLeavesRecurse(tree, uRight, Leaves, uLeafCount);
}
示例5: PhyEnumBiParts
bool PhyEnumBiParts(const Tree &tree, PhyEnumEdgeState &ES,
unsigned Leaves1[], unsigned *ptruCount1,
unsigned Leaves2[], unsigned *ptruCount2)
{
bool bOk = PhyEnumEdges(tree, ES);
if (!bOk)
{
*ptruCount1 = 0;
*ptruCount2 = 0;
return false;
}
// Special case: in a rooted tree, both edges from the root
// give the same bipartition, so skip one of them.
if (tree.IsRooted() && tree.IsRoot(ES.m_uNodeIndex2)
&& tree.GetRight(ES.m_uNodeIndex2) == ES.m_uNodeIndex1)
{
bOk = PhyEnumEdges(tree, ES);
if (!bOk)
return false;
}
PhyGetLeaves(tree, ES.m_uNodeIndex1, ES.m_uNodeIndex2, Leaves1, ptruCount1);
PhyGetLeaves(tree, ES.m_uNodeIndex2, ES.m_uNodeIndex1, Leaves2, ptruCount2);
if (*ptruCount1 + *ptruCount2 != tree.GetLeafCount())
Quit("PhyEnumBiParts %u + %u != %u",
*ptruCount1, *ptruCount2, tree.GetLeafCount());
#if DEBUG
{
for (unsigned i = 0; i < *ptruCount1; ++i)
{
if (!tree.IsLeaf(Leaves1[i]))
Quit("PhyEnumByParts: not leaf");
for (unsigned j = 0; j < *ptruCount2; ++j)
{
if (!tree.IsLeaf(Leaves2[j]))
Quit("PhyEnumByParts: not leaf");
if (Leaves1[i] == Leaves2[j])
Quit("PhyEnumByParts: dupe");
}
}
}
#endif
return true;
}
示例6: CountLeaves
static unsigned CountLeaves(const Tree &tree, unsigned uNodeIndex,
unsigned LeavesUnderNode[])
{
if (tree.IsLeaf(uNodeIndex))
{
LeavesUnderNode[uNodeIndex] = 1;
return 1;
}
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const unsigned uRight = tree.GetRight(uNodeIndex);
const unsigned uRightCount = CountLeaves(tree, uRight, LeavesUnderNode);
const unsigned uLeftCount = CountLeaves(tree, uLeft, LeavesUnderNode);
const unsigned uCount = uRightCount + uLeftCount;
LeavesUnderNode[uNodeIndex] = uCount;
return uCount;
}
示例7: GetLeavesSubtreeExcluding
static void GetLeavesSubtreeExcluding(const Tree &tree, unsigned uNodeIndex,
unsigned uExclude, unsigned Leaves[], unsigned *ptruCount)
{
if (uNodeIndex == uExclude)
return;
if (tree.IsLeaf(uNodeIndex))
{
Leaves[*ptruCount] = uNodeIndex;
++(*ptruCount);
return;
}
const unsigned uLeft = tree.GetLeft(uNodeIndex);
const unsigned uRight = tree.GetRight(uNodeIndex);
if (NULL_NEIGHBOR != uLeft)
GetLeavesSubtreeExcluding(tree, uLeft, uExclude, Leaves, ptruCount);
if (NULL_NEIGHBOR != uRight)
GetLeavesSubtreeExcluding(tree, uRight, uExclude, Leaves, ptruCount);
}
示例8: BuildDiffs
static void BuildDiffs(const Tree &tree, unsigned uTreeNodeIndex,
const bool bIsDiff[], Tree &Diffs, unsigned uDiffsNodeIndex,
unsigned IdToDiffsLeafNodeIndex[])
{
#if TRACE
Log("BuildDiffs(TreeNode=%u IsDiff=%d IsLeaf=%d)\n",
uTreeNodeIndex, bIsDiff[uTreeNodeIndex], tree.IsLeaf(uTreeNodeIndex));
#endif
if (bIsDiff[uTreeNodeIndex])
{
unsigned uLeafCount = tree.GetLeafCount();
unsigned *Leaves = new unsigned[uLeafCount];
GetLeaves(tree, uTreeNodeIndex, Leaves, &uLeafCount);
for (unsigned n = 0; n < uLeafCount; ++n)
{
const unsigned uLeafNodeIndex = Leaves[n];
const unsigned uId = tree.GetLeafId(uLeafNodeIndex);
if (uId >= tree.GetLeafCount())
Quit("BuildDiffs, id out of range");
IdToDiffsLeafNodeIndex[uId] = uDiffsNodeIndex;
#if TRACE
Log(" Leaf id=%u DiffsNode=%u\n", uId, uDiffsNodeIndex);
#endif
}
delete[] Leaves;
return;
}
if (tree.IsLeaf(uTreeNodeIndex))
Quit("BuildDiffs: should never reach leaf");
const unsigned uTreeLeft = tree.GetLeft(uTreeNodeIndex);
const unsigned uTreeRight = tree.GetRight(uTreeNodeIndex);
const unsigned uDiffsLeft = Diffs.AppendBranch(uDiffsNodeIndex);
const unsigned uDiffsRight = uDiffsLeft + 1;
BuildDiffs(tree, uTreeLeft, bIsDiff, Diffs, uDiffsLeft, IdToDiffsLeafNodeIndex);
BuildDiffs(tree, uTreeRight, bIsDiff, Diffs, uDiffsRight, IdToDiffsLeafNodeIndex);
}
示例9: ProgressiveAlignSubfams
static void ProgressiveAlignSubfams(const Tree &tree, const unsigned Subfams[],
unsigned uSubfamCount, const MSA SubfamMSAs[], MSA &msa)
{
const unsigned uNodeCount = tree.GetNodeCount();
bool *Ready = new bool[uNodeCount];
MSA **MSAs = new MSA *[uNodeCount];
for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex)
{
Ready[uNodeIndex] = false;
MSAs[uNodeIndex] = 0;
}
for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex)
{
unsigned uNodeIndex = Subfams[uSubfamIndex];
Ready[uNodeIndex] = true;
MSA *ptrMSA = new MSA;
// TODO: Wasteful copy, needs re-design
ptrMSA->Copy(SubfamMSAs[uSubfamIndex]);
MSAs[uNodeIndex] = ptrMSA;
}
for (unsigned uNodeIndex = tree.FirstDepthFirstNode();
NULL_NEIGHBOR != uNodeIndex;
uNodeIndex = tree.NextDepthFirstNode(uNodeIndex))
{
if (tree.IsLeaf(uNodeIndex))
continue;
unsigned uRight = tree.GetRight(uNodeIndex);
unsigned uLeft = tree.GetLeft(uNodeIndex);
if (!Ready[uRight] || !Ready[uLeft])
continue;
MSA *ptrLeft = MSAs[uLeft];
MSA *ptrRight = MSAs[uRight];
assert(ptrLeft != 0 && ptrRight != 0);
MSA *ptrParent = new MSA;
PWPath Path;
AlignTwoMSAs(*ptrLeft, *ptrRight, *ptrParent, Path);
MSAs[uNodeIndex] = ptrParent;
Ready[uNodeIndex] = true;
Ready[uLeft] = false;
Ready[uRight] = false;
delete MSAs[uLeft];
delete MSAs[uRight];
MSAs[uLeft] = 0;
MSAs[uRight] = 0;
}
#if DEBUG
{
unsigned uReadyCount = 0;
for (unsigned uNodeIndex = 0; uNodeIndex < uNodeCount; ++uNodeIndex)
{
if (Ready[uNodeIndex])
{
assert(tree.IsRoot(uNodeIndex));
++uReadyCount;
assert(0 != MSAs[uNodeIndex]);
}
else
assert(0 == MSAs[uNodeIndex]);
}
assert(1 == uReadyCount);
}
#endif
const unsigned uRoot = tree.GetRootNodeIndex();
MSA *ptrRootAlignment = MSAs[uRoot];
msa.Copy(*ptrRootAlignment);
delete ptrRootAlignment;
delete[] Ready;
#if TRACE
Log("After refine subfamilies, root alignment=\n");
msa.LogMe();
#endif
}
示例10: PruneTree
void Tree::PruneTree(const Tree &tree, unsigned Subfams[],
unsigned uSubfamCount)
{
if (!tree.IsRooted())
Quit("Tree::PruneTree: requires rooted tree");
Clear();
m_uNodeCount = 2*uSubfamCount - 1;
InitCache(m_uNodeCount);
const unsigned uUnprunedNodeCount = tree.GetNodeCount();
unsigned *uUnprunedToPrunedIndex = new unsigned[uUnprunedNodeCount];
unsigned *uPrunedToUnprunedIndex = new unsigned[m_uNodeCount];
for (unsigned n = 0; n < uUnprunedNodeCount; ++n)
uUnprunedToPrunedIndex[n] = NULL_NEIGHBOR;
for (unsigned n = 0; n < m_uNodeCount; ++n)
uPrunedToUnprunedIndex[n] = NULL_NEIGHBOR;
// Create mapping between unpruned and pruned node indexes
unsigned uInternalNodeIndex = uSubfamCount;
for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex)
{
unsigned uUnprunedNodeIndex = Subfams[uSubfamIndex];
uUnprunedToPrunedIndex[uUnprunedNodeIndex] = uSubfamIndex;
uPrunedToUnprunedIndex[uSubfamIndex] = uUnprunedNodeIndex;
for (;;)
{
uUnprunedNodeIndex = tree.GetParent(uUnprunedNodeIndex);
if (tree.IsRoot(uUnprunedNodeIndex))
break;
// Already visited this node?
if (NULL_NEIGHBOR != uUnprunedToPrunedIndex[uUnprunedNodeIndex])
break;
uUnprunedToPrunedIndex[uUnprunedNodeIndex] = uInternalNodeIndex;
uPrunedToUnprunedIndex[uInternalNodeIndex] = uUnprunedNodeIndex;
++uInternalNodeIndex;
}
}
const unsigned uUnprunedRootIndex = tree.GetRootNodeIndex();
uUnprunedToPrunedIndex[uUnprunedRootIndex] = uInternalNodeIndex;
uPrunedToUnprunedIndex[uInternalNodeIndex] = uUnprunedRootIndex;
#if TRACE
{
Log("Pruned to unpruned:\n");
for (unsigned i = 0; i < m_uNodeCount; ++i)
Log(" [%u]=%u", i, uPrunedToUnprunedIndex[i]);
Log("\n");
Log("Unpruned to pruned:\n");
for (unsigned i = 0; i < uUnprunedNodeCount; ++i)
{
unsigned n = uUnprunedToPrunedIndex[i];
if (n != NULL_NEIGHBOR)
Log(" [%u]=%u", i, n);
}
Log("\n");
}
#endif
if (uInternalNodeIndex != m_uNodeCount - 1)
Quit("Tree::PruneTree, Internal error");
// Nodes 0, 1 ... are the leaves
for (unsigned uSubfamIndex = 0; uSubfamIndex < uSubfamCount; ++uSubfamIndex)
{
char szName[32];
sprintf(szName, "Subfam_%u", uSubfamIndex + 1);
m_ptrName[uSubfamIndex] = strsave(szName);
}
for (unsigned uPrunedNodeIndex = uSubfamCount; uPrunedNodeIndex < m_uNodeCount;
++uPrunedNodeIndex)
{
unsigned uUnprunedNodeIndex = uPrunedToUnprunedIndex[uPrunedNodeIndex];
const unsigned uUnprunedLeft = tree.GetLeft(uUnprunedNodeIndex);
const unsigned uUnprunedRight = tree.GetRight(uUnprunedNodeIndex);
const unsigned uPrunedLeft = uUnprunedToPrunedIndex[uUnprunedLeft];
const unsigned uPrunedRight = uUnprunedToPrunedIndex[uUnprunedRight];
const double dLeftLength =
tree.GetEdgeLength(uUnprunedNodeIndex, uUnprunedLeft);
const double dRightLength =
tree.GetEdgeLength(uUnprunedNodeIndex, uUnprunedRight);
m_uNeighbor2[uPrunedNodeIndex] = uPrunedLeft;
m_uNeighbor3[uPrunedNodeIndex] = uPrunedRight;
m_dEdgeLength1[uPrunedLeft] = dLeftLength;
m_dEdgeLength1[uPrunedRight] = dRightLength;
//.........这里部分代码省略.........
示例11: DiffTreesE
void DiffTreesE(const Tree &NewTree, const Tree &OldTree,
unsigned NewNodeIndexToOldNodeIndex[])
{
#if TRACE
Log("DiffTreesE NewTree:\n");
NewTree.LogMe();
Log("\n");
Log("OldTree:\n");
OldTree.LogMe();
#endif
if (!NewTree.IsRooted() || !OldTree.IsRooted())
Quit("DiffTrees: requires rooted trees");
const unsigned uNodeCount = NewTree.GetNodeCount();
const unsigned uOldNodeCount = OldTree.GetNodeCount();
const unsigned uLeafCount = NewTree.GetLeafCount();
const unsigned uOldLeafCount = OldTree.GetLeafCount();
if (uNodeCount != uOldNodeCount || uLeafCount != uOldLeafCount)
Quit("DiffTreesE: different node counts");
{
unsigned *IdToOldNodeIndex = new unsigned[uNodeCount];
for (unsigned uOldNodeIndex = 0; uOldNodeIndex < uNodeCount; ++uOldNodeIndex)
{
if (OldTree.IsLeaf(uOldNodeIndex))
{
unsigned Id = OldTree.GetLeafId(uOldNodeIndex);
IdToOldNodeIndex[Id] = uOldNodeIndex;
}
}
// Initialize NewNodeIndexToOldNodeIndex[]
// All internal nodes are marked as changed, but may be updated later.
for (unsigned uNewNodeIndex = 0; uNewNodeIndex < uNodeCount; ++uNewNodeIndex)
{
if (NewTree.IsLeaf(uNewNodeIndex))
{
unsigned uId = NewTree.GetLeafId(uNewNodeIndex);
assert(uId < uLeafCount);
unsigned uOldNodeIndex = IdToOldNodeIndex[uId];
assert(uOldNodeIndex < uNodeCount);
NewNodeIndexToOldNodeIndex[uNewNodeIndex] = uOldNodeIndex;
}
else
NewNodeIndexToOldNodeIndex[uNewNodeIndex] = NODE_CHANGED;
}
delete[] IdToOldNodeIndex;
}
// Depth-first traversal of tree.
// The order guarantees that a node is visited before
// its parent is visited.
for (unsigned uNewNodeIndex = NewTree.FirstDepthFirstNode();
NULL_NEIGHBOR != uNewNodeIndex;
uNewNodeIndex = NewTree.NextDepthFirstNode(uNewNodeIndex))
{
if (NewTree.IsLeaf(uNewNodeIndex))
continue;
// If either child is changed, flag this node as changed and continue.
unsigned uNewLeft = NewTree.GetLeft(uNewNodeIndex);
unsigned uOldLeft = NewNodeIndexToOldNodeIndex[uNewLeft];
if (NODE_CHANGED == uOldLeft)
{
NewNodeIndexToOldNodeIndex[uNewLeft] = NODE_CHANGED;
continue;
}
unsigned uNewRight = NewTree.GetRight(uNewNodeIndex);
unsigned uOldRight = NewNodeIndexToOldNodeIndex[uNewRight];
if (NODE_CHANGED == NewNodeIndexToOldNodeIndex[uNewRight])
{
NewNodeIndexToOldNodeIndex[uNewRight] = NODE_CHANGED;
continue;
}
unsigned uOldParentLeft = OldTree.GetParent(uOldLeft);
unsigned uOldParentRight = OldTree.GetParent(uOldRight);
if (uOldParentLeft == uOldParentRight)
NewNodeIndexToOldNodeIndex[uNewNodeIndex] = uOldParentLeft;
else
NewNodeIndexToOldNodeIndex[uNewNodeIndex] = NODE_CHANGED;
}
#if TRACE
{
Log("NewToOld ");
for (unsigned uNewNodeIndex = 0; uNewNodeIndex < uNodeCount; ++uNewNodeIndex)
{
Log(" [%3u]=", uNewNodeIndex);
if (NODE_CHANGED == NewNodeIndexToOldNodeIndex[uNewNodeIndex])
Log(" X");
else
Log("%3u", NewNodeIndexToOldNodeIndex[uNewNodeIndex]);
if ((uNewNodeIndex+1)%8 == 0)
Log("\n ");
}
//.........这里部分代码省略.........
示例12: ProgressiveAlign
void ProgressiveAlign(const SeqVect &v, const Tree &GuideTree, MSA &a)
{
assert(GuideTree.IsRooted());
#if TRACE
Log("GuideTree:\n");
GuideTree.LogMe();
#endif
const unsigned uSeqCount = v.Length();
const unsigned uNodeCount = 2*uSeqCount - 1;
ProgNode *ProgNodes = new ProgNode[uNodeCount];
unsigned uJoin = 0;
unsigned uTreeNodeIndex = GuideTree.FirstDepthFirstNode();
SetProgressDesc("Align node");
do
{
if (GuideTree.IsLeaf(uTreeNodeIndex))
{
if (uTreeNodeIndex >= uNodeCount)
Quit("TreeNodeIndex=%u NodeCount=%u\n", uTreeNodeIndex, uNodeCount);
ProgNode &Node = ProgNodes[uTreeNodeIndex];
unsigned uId = GuideTree.GetLeafId(uTreeNodeIndex);
if (uId >= uSeqCount)
Quit("Seq index out of range");
const Seq &s = *(v[uId]);
Node.m_MSA.FromSeq(s);
Node.m_MSA.SetSeqId(0, uId);
Node.m_uLength = Node.m_MSA.GetColCount();
}
else
{
Progress(uJoin, uSeqCount - 1);
++uJoin;
const unsigned uMergeNodeIndex = uTreeNodeIndex;
ProgNode &Parent = ProgNodes[uMergeNodeIndex];
const unsigned uLeft = GuideTree.GetLeft(uTreeNodeIndex);
const unsigned uRight = GuideTree.GetRight(uTreeNodeIndex);
ProgNode &Node1 = ProgNodes[uLeft];
ProgNode &Node2 = ProgNodes[uRight];
PWPath Path;
AlignTwoMSAs(Node1.m_MSA, Node2.m_MSA, Parent.m_MSA, Path);
Parent.m_uLength = Parent.m_MSA.GetColCount();
Node1.m_MSA.Clear();
Node2.m_MSA.Clear();
}
uTreeNodeIndex = GuideTree.NextDepthFirstNode(uTreeNodeIndex);
}
while (NULL_NEIGHBOR != uTreeNodeIndex);
ProgressStepsDone();
unsigned uRootNodeIndex = GuideTree.GetRootNodeIndex();
const ProgNode &RootProgNode = ProgNodes[uRootNodeIndex];
a.Copy(RootProgNode.m_MSA);
delete[] ProgNodes;
ProgNodes = 0;
}
示例13: ProgAlignSubFams
//.........这里部分代码省略.........
ProgNodes = ProgressiveAlignE(v, GuideTree, msa);
delete[] ProgNodes;
}
else
ProgressiveAlign(v, GuideTree, msa);
SetCurrentAlignment(msa);
TreeFromMSA(msa, GuideTree, g_Cluster2.get(), g_Distance2.get(), g_Root2.get());
SetMuscleTree(GuideTree);
unsigned *SubFams = new unsigned[uSeqCount];
unsigned uSubFamCount;
SubFam(GuideTree, g_uMaxSubFamCount.get(), SubFams, &uSubFamCount);
SetProgressDesc("Align node");
const unsigned uNodeCount = 2*uSeqCount - 1;
ProgNode *ProgNodes = new ProgNode[uNodeCount];
bool *NodeIsSubFam = new bool[uNodeCount];
bool *NodeInSubFam = new bool[uNodeCount];
for (unsigned i = 0; i < uNodeCount; ++i)
{
NodeIsSubFam[i] = false;
NodeInSubFam[i] = false;
}
for (unsigned i = 0; i < uSubFamCount; ++i)
{
unsigned uNodeIndex = SubFams[i];
assert(uNodeIndex < uNodeCount);
NodeIsSubFam[uNodeIndex] = true;
SetInFam(GuideTree, uNodeIndex, NodeInSubFam);
}
unsigned uJoin = 0;
unsigned uTreeNodeIndex = GuideTree.FirstDepthFirstNode();
do
{
if (NodeIsSubFam[uTreeNodeIndex])
{
#if TRACE
Log("Node %d: align subfam\n", uTreeNodeIndex);
#endif
ProgNode &Node = ProgNodes[uTreeNodeIndex];
AlignSubFam(v, GuideTree, uTreeNodeIndex, Node.m_MSA);
Node.m_uLength = Node.m_MSA.GetColCount();
}
else if (!NodeInSubFam[uTreeNodeIndex])
{
#if TRACE
Log("Node %d: align two subfams\n", uTreeNodeIndex);
#endif
Progress(uJoin, uSubFamCount - 1);
++uJoin;
const unsigned uMergeNodeIndex = uTreeNodeIndex;
ProgNode &Parent = ProgNodes[uMergeNodeIndex];
const unsigned uLeft = GuideTree.GetLeft(uTreeNodeIndex);
const unsigned uRight = GuideTree.GetRight(uTreeNodeIndex);
ProgNode &Node1 = ProgNodes[uLeft];
ProgNode &Node2 = ProgNodes[uRight];
PWPath Path;
AlignTwoMSAs(Node1.m_MSA, Node2.m_MSA, Parent.m_MSA, Path);
Parent.m_uLength = Parent.m_MSA.GetColCount();
Node1.m_MSA.Clear();
Node2.m_MSA.Clear();
}
else
{
#if TRACE
Log("Node %d: in subfam\n", uTreeNodeIndex);
#endif
;
}
uTreeNodeIndex = GuideTree.NextDepthFirstNode(uTreeNodeIndex);
}
while (NULL_NEIGHBOR != uTreeNodeIndex);
ProgressStepsDone();
unsigned uRootNodeIndex = GuideTree.GetRootNodeIndex();
ProgNode &RootProgNode = ProgNodes[uRootNodeIndex];
TextFile fOut(g_pstrOutFileName.get(), true);
MHackEnd(RootProgNode.m_MSA);
RootProgNode.m_MSA.ToFile(fOut);
delete[] NodeInSubFam;
delete[] NodeIsSubFam;
delete[] ProgNodes;
delete[] SubFams;
ProgNodes = 0;
NodeInSubFam = 0;
NodeIsSubFam = 0;
SubFams = 0;
}
示例14: DiffTrees
//.........这里部分代码省略.........
// Ids assigned to internal nodes are N, N+1 ...
// An internal node id uniquely identifies a set
// of two or more leaves.
unsigned uInternalNodeId = uLeafCount;
// Depth-first traversal of tree.
// The order guarantees that a node is visited before
// its parent is visited.
for (unsigned uNodeIndex1 = Tree1.FirstDepthFirstNode();
NULL_NEIGHBOR != uNodeIndex1;
uNodeIndex1 = Tree1.NextDepthFirstNode(uNodeIndex1))
{
#if TRACE
Log("Main loop: Node1=%u IsLeaf=%d IsBachelor=%d\n",
uNodeIndex1,
Tree1.IsLeaf(uNodeIndex1),
bIsBachelor1[uNodeIndex1]);
#endif
// Leaves are trivial; nothing to do.
if (Tree1.IsLeaf(uNodeIndex1) || bIsBachelor1[uNodeIndex1])
continue;
// If either child is a bachelor, flag
// this node as a bachelor and continue.
unsigned uLeft1 = Tree1.GetLeft(uNodeIndex1);
if (bIsBachelor1[uLeft1])
{
bIsBachelor1[uNodeIndex1] = true;
continue;
}
unsigned uRight1 = Tree1.GetRight(uNodeIndex1);
if (bIsBachelor1[uRight1])
{
bIsBachelor1[uNodeIndex1] = true;
continue;
}
// Both children are married.
// Married nodes are guaranteed to have an id.
unsigned uIdLeft = NodeIndexToId1[uLeft1];
unsigned uIdRight = NodeIndexToId1[uRight1];
if (uIdLeft == uNodeCount || uIdRight == uNodeCount)
Quit("DiffTrees, check 5");
// uLeft2 is the spouse of uLeft1, and similarly for uRight2.
unsigned uLeft2 = IdToNodeIndex2[uIdLeft];
unsigned uRight2 = IdToNodeIndex2[uIdRight];
if (uLeft2 == uNodeCount || uRight2 == uNodeCount)
Quit("DiffTrees, check 6");
// If the spouses of uLeft1 and uRight1 have the same
// parent, then this parent is the spouse of uNodeIndex1.
// Otherwise, uNodeIndex1 is a diff.
unsigned uParentLeft2 = Tree2.GetParent(uLeft2);
unsigned uParentRight2 = Tree2.GetParent(uRight2);
#if TRACE
Log("L1=%u R1=%u L2=%u R2=%u PL2=%u PR2=%u\n",
uLeft1,
uRight1,
uLeft2,