当前位置: 首页>>代码示例>>C++>>正文


C++ Transient::getDT方法代码示例

本文整理汇总了C++中Transient::getDT方法的典型用法代码示例。如果您正苦于以下问题:C++ Transient::getDT方法的具体用法?C++ Transient::getDT怎么用?C++ Transient::getDT使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Transient的用法示例。


在下文中一共展示了Transient::getDT方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

Real
TransientMultiApp::computeDT()
{
  if (_sub_cycling) // Bow out of the timestep selection dance
    return std::numeric_limits<Real>::max();

  Real smallest_dt = std::numeric_limits<Real>::max();

  if (_has_an_app)
  {
    MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);

    for(unsigned int i=0; i<_my_num_apps; i++)
    {
      Transient * ex = _transient_executioners[i];
      ex->computeDT();
      Real dt = ex->getDT();

      smallest_dt = std::min(dt, smallest_dt);
    }

    // Swap back
    Moose::swapLibMeshComm(swapped);
  }

  if (_tolerate_failure) // Bow out of the timestep selection dance, we do this down here because we need to call computeConstrainedDT at least once for these executioners...
    return std::numeric_limits<Real>::max();


  _communicator.min(smallest_dt);
  return smallest_dt;
}
开发者ID:kun-liu,项目名称:moose,代码行数:32,代码来源:TransientMultiApp.C

示例2: aldit

void
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
  if (_sub_cycling && !auto_advance)
    mooseError("TransientMultiApp with sub_cycling=true is not compatible with auto_advance=false");

  if (_catch_up && !auto_advance)
    mooseError("TransientMultiApp with catch_up=true is not compatible with auto_advance=false");

  if (!_has_an_app)
    return;

  _auto_advance = auto_advance;

  Moose::out << "Solving MultiApp " << _name << std::endl;

// "target_time" must always be in global time
  target_time += _app.getGlobalTimeOffset();

  MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);

  int rank;
  int ierr;
  ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr);

  for (unsigned int i=0; i<_my_num_apps; i++)
  {

    FEProblem * problem = appProblem(_first_local_app + i);
    OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();

    Transient * ex = _transient_executioners[i];

    // The App might have a different local time from the rest of the problem
    Real app_time_offset = _apps[i]->getGlobalTimeOffset();

    if ((ex->getTime() + app_time_offset) + 2e-14 >= target_time) // Maybe this MultiApp was already solved
      continue;

    if (_sub_cycling)
    {
      Real time_old = ex->getTime() + app_time_offset;

      if (_interpolate_transfers)
      {
        AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
        System & libmesh_aux_system = aux_system.system();

        NumericVector<Number> & solution = *libmesh_aux_system.solution;
        NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");

        solution.close();

        // Save off the current auxiliary solution
        transfer_old = solution;

        transfer_old.close();

        // Snag all of the local dof indices for all of these variables
        AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
        ConstElemRange & elem_range = *problem->mesh().getActiveLocalElementRange();
        Threads::parallel_reduce(elem_range, aldit);

        _transferred_dofs = aldit._all_dof_indices;
      }

      if (_output_sub_cycles)
        output_warehouse.allowOutput(true);
      else
        output_warehouse.allowOutput(false);

      ex->setTargetTime(target_time-app_time_offset);

//      unsigned int failures = 0;

      bool at_steady = false;

      // Now do all of the solves we need
      while(true)
      {
        if (_first != true)
          ex->incrementStepOrReject();
        _first = false;

        if (!(!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time))
          break;

        ex->computeDT();

        if (_interpolate_transfers)
        {
          // See what time this executioner is going to go to.
          Real future_time = ex->getTime() + app_time_offset + ex->getDT();

          // How far along we are towards the target time:
          Real step_percent = (future_time - time_old) / (target_time - time_old);

          Real one_minus_step_percent = 1.0 - step_percent;

          // Do the interpolation for each variable that was transferred to
//.........这里部分代码省略.........
开发者ID:kun-liu,项目名称:moose,代码行数:101,代码来源:TransientMultiApp.C

示例3: swapper

bool
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
  if (!_has_an_app)
    return true;

  _auto_advance = auto_advance;

  _console << "Solving MultiApp " << name() << std::endl;

  // "target_time" must always be in global time
  target_time += _app.getGlobalTimeOffset();

  Moose::ScopedCommSwapper swapper(_my_comm);
  bool return_value = true;

  // Make sure we swap back the communicator regardless of how this routine is exited
  try
  {
    int rank;
    int ierr;
    ierr = MPI_Comm_rank(_orig_comm, &rank);
    mooseCheckMPIErr(ierr);

    for (unsigned int i = 0; i < _my_num_apps; i++)
    {

      FEProblemBase & problem = appProblemBase(_first_local_app + i);

      Transient * ex = _transient_executioners[i];

      // The App might have a different local time from the rest of the problem
      Real app_time_offset = _apps[i]->getGlobalTimeOffset();

      // Maybe this MultiApp was already solved
      if ((ex->getTime() + app_time_offset + 2e-14 >= target_time) ||
          (ex->getTime() >= ex->endTime()))
        continue;

      if (_sub_cycling)
      {
        Real time_old = ex->getTime() + app_time_offset;

        if (_interpolate_transfers)
        {
          AuxiliarySystem & aux_system = problem.getAuxiliarySystem();
          System & libmesh_aux_system = aux_system.system();

          NumericVector<Number> & solution = *libmesh_aux_system.solution;
          NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");

          solution.close();

          // Save off the current auxiliary solution
          transfer_old = solution;

          transfer_old.close();

          // Snag all of the local dof indices for all of these variables
          AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
          ConstElemRange & elem_range = *problem.mesh().getActiveLocalElementRange();
          Threads::parallel_reduce(elem_range, aldit);

          _transferred_dofs = aldit._all_dof_indices;
        }

        // Disable/enable output for sub cycling
        problem.allowOutput(_output_sub_cycles);         // disables all outputs, including console
        problem.allowOutput<Console>(_print_sub_cycles); // re-enables Console to print, if desired

        ex->setTargetTime(target_time - app_time_offset);

        //      unsigned int failures = 0;

        bool at_steady = false;

        if (_first && !_app.isRecovering())
          problem.advanceState();

        bool local_first = _first;

        // Now do all of the solves we need
        while ((!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time) ||
               !ex->lastSolveConverged())
        {
          if (local_first != true)
            ex->incrementStepOrReject();

          local_first = false;

          ex->preStep();
          ex->computeDT();

          if (_interpolate_transfers)
          {
            // See what time this executioner is going to go to.
            Real future_time = ex->getTime() + app_time_offset + ex->getDT();

            // How far along we are towards the target time:
            Real step_percent = (future_time - time_old) / (target_time - time_old);
//.........这里部分代码省略.........
开发者ID:FHilty,项目名称:moose,代码行数:101,代码来源:TransientMultiApp.C


注:本文中的Transient::getDT方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。