本文整理汇总了C++中Transient类的典型用法代码示例。如果您正苦于以下问题:C++ Transient类的具体用法?C++ Transient怎么用?C++ Transient使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Transient类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mooseError
void TransientMultiApp::setupApp(unsigned int i, Real /*time*/) // FIXME: Should we be passing time?
{
auto & app = _apps[i];
Transient * ex = dynamic_cast<Transient *>(app->getExecutioner());
if (!ex)
mooseError("MultiApp ", name(), " is not using a Transient Executioner!");
// Get the FEProblemBase for the current MultiApp
FEProblemBase & problem = appProblemBase(_first_local_app + i);
// Update the file numbers for the outputs from the parent application
app->getOutputWarehouse().setFileNumbers(_app.getOutputFileNumbers());
// Call initialization method of Executioner (Note, this preforms the output of the initial time
// step, if desired)
ex->init();
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem.getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
// We'll store a copy of the auxiliary system's solution at the old time in here
libmesh_aux_system.add_vector("transfer_old", false);
// This will be where we'll transfer the value to for the "target" time
libmesh_aux_system.add_vector("transfer", false);
}
ex->preExecute();
if (!_app.isRecovering())
problem.advanceState();
_transient_executioners[i] = ex;
}
示例2:
Real
TransientMultiApp::computeDT()
{
if (_sub_cycling) // Bow out of the timestep selection dance
return std::numeric_limits<Real>::max();
Real smallest_dt = std::numeric_limits<Real>::max();
if (_has_an_app)
{
MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);
for(unsigned int i=0; i<_my_num_apps; i++)
{
Transient * ex = _transient_executioners[i];
ex->computeDT();
Real dt = ex->getDT();
smallest_dt = std::min(dt, smallest_dt);
}
// Swap back
Moose::swapLibMeshComm(swapped);
}
if (_tolerate_failure) // Bow out of the timestep selection dance, we do this down here because we need to call computeConstrainedDT at least once for these executioners...
return std::numeric_limits<Real>::max();
_communicator.min(smallest_dt);
return smallest_dt;
}
示例3: Init
void DlgInitiation::Init(Transient &ref)
{
m_nEventType = ref.TranType().GetnValue();
m_page1.Init(ref.TranTriger1());
m_page2.Init(ref.TranTriger2());
SetEventStatus();
UpdateData(FALSE);
}
示例4: Init
void DlgTarnsData::Init(Transient &ref,CString strType,CString strUnit)
{
m_nValueType = ref.ValueType().GetnValue();
m_strType = strType;
m_strUnit = strUnit;
CString strHeader = GetHeader();
m_page1.Init(ref.Repeat1(),ref.m_Trans1Table,strHeader);
m_page2.Init(ref.Repeat2(),ref.m_Trans2Table,strHeader);
UpdateData(FALSE);
}
示例5:
void
TransientMultiApp::incrementTStep()
{
if (!_sub_cycling)
{
for (unsigned int i = 0; i < _my_num_apps; i++)
{
Transient * ex = _transient_executioners[i];
ex->incrementStepOrReject();
}
}
}
示例6: mooseError
void
TransientMultiApp::setupApp(unsigned int i, Real /*time*/, bool output_initial) // FIXME: Should we be passing time?
{
MooseApp * app = _apps[i];
Transient * ex = dynamic_cast<Transient *>(app->getExecutioner());
if (!ex)
mooseError("MultiApp " << _name << " is not using a Transient Executioner!");
// Get the FEProblem and OutputWarehouse for the current MultiApp
FEProblem * problem = appProblem(_first_local_app + i);
OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();
if (!output_initial)
{
ex->outputInitial(false);//\todo{Remove; handled within ex->init()}
output_warehouse.allowOutput(false);
}
// Set the file numbers of the i-th app to that of the parent app
output_warehouse.setFileNumbers(app->getOutputFileNumbers());
// Call initialization method of Executioner (Note, this preforms the output of the initial time step, if desired)
ex->init();
// Enable output after setup
output_warehouse.allowOutput(true);
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
// We'll store a copy of the auxiliary system's solution at the old time in here
libmesh_aux_system.add_vector("transfer_old", false);
// This will be where we'll transfer the value to for the "target" time
libmesh_aux_system.add_vector("transfer", false);
}
ex->preExecute();
problem->copyOldSolutions();
_transient_executioners[i] = ex;
if (_detect_steady_state || _tolerate_failure)
{
_apps[i]->getOutputWarehouse().allowOutput(false);
ex->allowOutput(false);
}
}
示例7: mooseError
void
SetupTimeStepperAction::act()
{
if (_problem->isTransient())
{
Transient * transient = dynamic_cast<Transient *>(_executioner.get());
if (transient == NULL)
mooseError("You can setup time stepper only with executioners of transient type.");
_moose_object_pars.set<FEProblem *>("_fe_problem") = _problem.get();
_moose_object_pars.set<Transient *>("_executioner") = transient;
MooseSharedPointer<TimeStepper> ts = MooseSharedNamespace::static_pointer_cast<TimeStepper>(_factory.create(_type, "TimeStepper", _moose_object_pars));
transient->setTimeStepper(ts);
}
}
示例8: mooseError
void
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
if (_sub_cycling && !auto_advance)
mooseError("TransientMultiApp with sub_cycling=true is not compatible with auto_advance=false");
if (_catch_up && !auto_advance)
mooseError("TransientMultiApp with catch_up=true is not compatible with auto_advance=false");
if (!_has_an_app)
return;
_auto_advance = auto_advance;
Moose::out << "Solving MultiApp " << _name << std::endl;
// "target_time" must always be in global time
target_time += _app.getGlobalTimeOffset();
MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);
int rank;
int ierr;
ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr);
for (unsigned int i=0; i<_my_num_apps; i++)
{
FEProblem * problem = appProblem(_first_local_app + i);
OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();
Transient * ex = _transient_executioners[i];
// The App might have a different local time from the rest of the problem
Real app_time_offset = _apps[i]->getGlobalTimeOffset();
if ((ex->getTime() + app_time_offset) + 2e-14 >= target_time) // Maybe this MultiApp was already solved
continue;
if (_sub_cycling)
{
Real time_old = ex->getTime() + app_time_offset;
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
NumericVector<Number> & solution = *libmesh_aux_system.solution;
NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");
solution.close();
// Save off the current auxiliary solution
transfer_old = solution;
transfer_old.close();
// Snag all of the local dof indices for all of these variables
AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
ConstElemRange & elem_range = *problem->mesh().getActiveLocalElementRange();
Threads::parallel_reduce(elem_range, aldit);
_transferred_dofs = aldit._all_dof_indices;
}
if (_output_sub_cycles)
output_warehouse.allowOutput(true);
else
output_warehouse.allowOutput(false);
ex->setTargetTime(target_time-app_time_offset);
// unsigned int failures = 0;
bool at_steady = false;
// Now do all of the solves we need
while(true)
{
if (_first != true)
ex->incrementStepOrReject();
_first = false;
if (!(!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time))
break;
ex->computeDT();
if (_interpolate_transfers)
{
// See what time this executioner is going to go to.
Real future_time = ex->getTime() + app_time_offset + ex->getDT();
// How far along we are towards the target time:
Real step_percent = (future_time - time_old) / (target_time - time_old);
Real one_minus_step_percent = 1.0 - step_percent;
// Do the interpolation for each variable that was transferred to
//.........这里部分代码省略.........
示例9: name
bool
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
if (!_has_an_app)
return true;
_auto_advance = auto_advance;
_console << "Solving MultiApp " << name() << std::endl;
// "target_time" must always be in global time
target_time += _app.getGlobalTimeOffset();
Moose::ScopedCommSwapper swapper(_my_comm);
bool return_value = true;
// Make sure we swap back the communicator regardless of how this routine is exited
try
{
int rank;
int ierr;
ierr = MPI_Comm_rank(_orig_comm, &rank);
mooseCheckMPIErr(ierr);
for (unsigned int i = 0; i < _my_num_apps; i++)
{
FEProblemBase & problem = appProblemBase(_first_local_app + i);
Transient * ex = _transient_executioners[i];
// The App might have a different local time from the rest of the problem
Real app_time_offset = _apps[i]->getGlobalTimeOffset();
// Maybe this MultiApp was already solved
if ((ex->getTime() + app_time_offset + 2e-14 >= target_time) ||
(ex->getTime() >= ex->endTime()))
continue;
if (_sub_cycling)
{
Real time_old = ex->getTime() + app_time_offset;
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem.getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
NumericVector<Number> & solution = *libmesh_aux_system.solution;
NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");
solution.close();
// Save off the current auxiliary solution
transfer_old = solution;
transfer_old.close();
// Snag all of the local dof indices for all of these variables
AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
ConstElemRange & elem_range = *problem.mesh().getActiveLocalElementRange();
Threads::parallel_reduce(elem_range, aldit);
_transferred_dofs = aldit._all_dof_indices;
}
// Disable/enable output for sub cycling
problem.allowOutput(_output_sub_cycles); // disables all outputs, including console
problem.allowOutput<Console>(_print_sub_cycles); // re-enables Console to print, if desired
ex->setTargetTime(target_time - app_time_offset);
// unsigned int failures = 0;
bool at_steady = false;
if (_first && !_app.isRecovering())
problem.advanceState();
bool local_first = _first;
// Now do all of the solves we need
while ((!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time) ||
!ex->lastSolveConverged())
{
if (local_first != true)
ex->incrementStepOrReject();
local_first = false;
ex->preStep();
ex->computeDT();
if (_interpolate_transfers)
{
// See what time this executioner is going to go to.
Real future_time = ex->getTime() + app_time_offset + ex->getDT();
// How far along we are towards the target time:
Real step_percent = (future_time - time_old) / (target_time - time_old);
//.........这里部分代码省略.........