本文整理汇总了C++中ToyMCSampler::GenerateToyData方法的典型用法代码示例。如果您正苦于以下问题:C++ ToyMCSampler::GenerateToyData方法的具体用法?C++ ToyMCSampler::GenerateToyData怎么用?C++ ToyMCSampler::GenerateToyData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ToyMCSampler
的用法示例。
在下文中一共展示了ToyMCSampler::GenerateToyData方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: OneSidedFrequentistUpperLimitWithBands_intermediate
//.........这里部分代码省略.........
/////////////////////////////////////////////////////////////
// Now we generate the expected bands and power-constriant
////////////////////////////////////////////////////////////
// First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
firstPOI->setVal(0.);
profile->getVal(); // this will do fit and set nuisance parameters to profiled values
RooArgSet* poiAndNuisance = new RooArgSet();
if(mc->GetNuisanceParameters())
poiAndNuisance->add(*mc->GetNuisanceParameters());
poiAndNuisance->add(*mc->GetParametersOfInterest());
w->saveSnapshot("paramsToGenerateData",*poiAndNuisance);
RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot();
cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl;
paramsToGenerateData->Print("v");
double CLb=0;
double CLbinclusive=0;
// Now we generate background only and find distribution of upper limits
TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax());
histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)");
histOfUL->GetYaxis()->SetTitle("Entries");
for(int imc=0; imc<nToyMC; ++imc){
// set parameters back to values for generating pseudo data
w->loadSnapshot("paramsToGenerateData");
// in 5.30 there is a nicer way to generate toy data & randomize global obs
RooAbsData* toyData = toymcsampler->GenerateToyData(*paramsToGenerateData);
// get test stat at observed UL in observed data
firstPOI->setVal(observedUL);
double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);
// toyData->get()->Print("v");
// cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl;
if(obsTSatObsUL < toyTSatObsUL) // (should be checked)
CLb+= (1.)/nToyMC;
if(obsTSatObsUL <= toyTSatObsUL) // (should be checked)
CLbinclusive+= (1.)/nToyMC;
// loop over points in belt to find upper limit for this toy data
double thisUL = 0;
for(Int_t i=0; i<parameterScan->numEntries(); ++i){
tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);
if(thisTS<=arMax){
thisUL = firstPOI->getVal();
} else{
break;
}
}
histOfUL->Fill(thisUL);
delete toyData;
开发者ID:gerbaudo,项目名称:hlfv-fitmodel,代码行数:67,代码来源:OneSidedFrequentistUpperLimitWithBands_intermediate.C
示例2: fit_toy
result fit_toy(RooWorkspace* wspace, int n, const RooArgSet* globals) {
RooRandom::randomGenerator()->SetSeed(0);
// TFile f(filename);
// RooWorkspace *wspace = (RooWorkspace*)f.Get("combined");
ModelConfig* model = (ModelConfig*)wspace->obj("ModelConfig");
RooAbsPdf* pdf;
pdf = model->GetPdf();
RooAbsPdf* top_constraint = (RooAbsPdf*)wspace->obj("top_ratio_constraint");
RooAbsPdf* vv_constraint = (RooAbsPdf*)wspace->obj("vv_ratio_constraint");
RooAbsPdf* top_vv_constraint_sf = (RooAbsPdf*)wspace->obj("top_vv_ratio_sf_constraint");
RooAbsPdf* top_vv_constraint_of = (RooAbsPdf*)wspace->obj("top_vv_ratio_of_constraint");
// generate constraint global observables
RooRealVar *nom_top_ratio = (RooRealVar*)wspace->obj("nom_top_ratio");
nom_top_ratio->setRange(0, 100);
RooRealVar *nom_vv_ratio = (RooRealVar*)wspace->obj("nom_vv_ratio");
nom_vv_ratio->setRange(0,100);
RooRealVar *nom_top_vv_ratio_sf = (RooRealVar*)wspace->obj("nom_top_vv_ratio_sf");
nom_top_vv_ratio_sf->setRange(0,100);
RooRealVar *nom_top_vv_ratio_of = (RooRealVar*)wspace->obj("nom_top_vv_ratio_of");
nom_top_vv_ratio_of->setRange(0,100);
RooDataSet *nom_top_generated = top_constraint->generateSimGlobal(RooArgSet(*nom_top_ratio), 1);
nom_top_ratio->setVal(((RooRealVar*)nom_top_generated->get(0)->find("nom_top_ratio"))->getVal());
RooDataSet *nom_vv_generated = vv_constraint->generateSimGlobal(RooArgSet(*nom_vv_ratio), 1);
nom_vv_ratio->setVal(((RooRealVar*)nom_vv_generated->get(0)->find("nom_vv_ratio"))->getVal());
RooDataSet *nom_top_vv_sf_generated = top_vv_constraint_sf->generateSimGlobal(RooArgSet(*nom_top_vv_ratio_sf), 1);
nom_top_vv_ratio_sf->setVal(((RooRealVar*)nom_top_vv_sf_generated->get(0)->find("nom_top_vv_ratio_sf"))->getVal());
RooDataSet *nom_top_vv_of_generated = top_vv_constraint_of->generateSimGlobal(RooArgSet(*nom_top_vv_ratio_of), 1);
nom_top_vv_ratio_of->setVal(((RooRealVar*)nom_top_vv_of_generated->get(0)->find("nom_top_vv_ratio_of"))->getVal());
NumEventsTestStat* dummy = new NumEventsTestStat(*pdf);
ToyMCSampler* mc = new ToyMCSampler(*dummy, 1);
mc->SetPdf(*pdf);
mc->SetObservables(*model->GetObservables());
mc->SetGlobalObservables(*globals);
mc->SetNuisanceParameters(*model->GetNuisanceParameters());
mc->SetParametersForTestStat(*model->GetParametersOfInterest());
mc->SetNEventsPerToy(n);
RooArgSet constr;
constr.add(*(model->GetNuisanceParameters()));
RemoveConstantParameters(&constr);
RooDataSet* toy_data = (RooDataSet*)mc->GenerateToyData(*const_cast<RooArgSet*>(model->GetSnapshot()));
RooFitResult *res = pdf->fitTo(*toy_data, Constrain(constr), PrintLevel(0), Save(),
Range("fitRange"), InitialHesse(),
ExternalConstraints(RooArgSet(*top_constraint, *vv_constraint, *top_vv_constraint_sf, *top_vv_constraint_of)));
result yield = get_results(wspace, res);
yield.of.generated_sum.val = toy_data->sumEntries("(channelCat==channelCat::of) & (obs_x_of>120)");
yield.sf.generated_sum.val = toy_data->sumEntries("(channelCat==channelCat::sf) & (obs_x_sf>120)");
delete mc;
delete dummy;
// f.Close();
return yield;
}