本文整理汇总了C++中ToyMCSampler类的典型用法代码示例。如果您正苦于以下问题:C++ ToyMCSampler类的具体用法?C++ ToyMCSampler怎么用?C++ ToyMCSampler使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ToyMCSampler类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: frequentist
//void RunToyScan5(TString fileName, double startVal, double stopVal, TString outFile) {
void frequentist(TString fileName) {
cout << "Starting frequentist " << time(NULL) << endl;
double startVal = 0;
double stopVal = 200;
TString outFile = "";
int nToys = 1 ;
int nscanpoints = 2 ;
/*
gROOT->LoadMacro("RooBetaPdf.cxx+") ;
gROOT->LoadMacro("RooRatio.cxx+") ;
gROOT->LoadMacro("RooPosDefCorrGauss.cxx+") ;
*/
// get relevant objects out of the "ws" file
TFile *file = TFile::Open(fileName);
if(!file){
cout <<"file not found" << endl;
return;
}
RooWorkspace* w = (RooWorkspace*) file->Get("workspace");
if(!w){
cout <<"workspace not found" << endl;
return;
}
ModelConfig* mc = (ModelConfig*) w->obj("S+B_model");
RooAbsData* data = w->data("data");
if( !data || !mc ){
w->Print();
cout << "data or ModelConfig was not found" <<endl;
return;
}
RooRealVar* myPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
myPOI->setRange(0, 1000.);
ModelConfig* bModel = (ModelConfig*) w->obj("B_model");
ModelConfig* sbModel = (ModelConfig*) w->obj("S+B_model");
ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
profll.SetPrintLevel(2);
profll.SetOneSided(1);
TestStatistic * testStat = &profll;
HypoTestCalculatorGeneric * hc = 0;
hc = new FrequentistCalculator(*data, *bModel, *sbModel);
ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
toymcs->SetMaxToys(10000);
toymcs->SetNEventsPerToy(1);
toymcs->SetTestStatistic(testStat);
((FrequentistCalculator *)hc)->SetToys(nToys,nToys);
HypoTestInverter calc(*hc);
calc.SetConfidenceLevel(0.95);
calc.UseCLs(true);
//calc.SetVerbose(true);
calc.SetVerbose(2);
cout << "About to set fixed scan " << time(NULL) << endl;
calc.SetFixedScan(nscanpoints,startVal,stopVal);
cout << "About to do inverter " << time(NULL) << endl;
HypoTestInverterResult * res_toysCLs_calculator = calc.GetInterval();
cout << "CLs = " << res_toysCLs_calculator->UpperLimit()
<< " CLs_exp = " << res_toysCLs_calculator->GetExpectedUpperLimit(0)
<< " CLs_exp(-1s) = " << res_toysCLs_calculator->GetExpectedUpperLimit(-1)
<< " CLs_exp(+1s) = " << res_toysCLs_calculator->GetExpectedUpperLimit(1) << endl ;
/*
// dump results string to output file
ofstream outStream ;
outStream.open(outFile,ios::app) ;
outStream << "CLs = " << res_toysCLs_calculator->UpperLimit()
<< " CLs_exp = " << res_toysCLs_calculator->GetExpectedUpperLimit(0)
<< " CLs_exp(-1s) = " << res_toysCLs_calculator->GetExpectedUpperLimit(-1)
<< " CLs_exp(+1s) = " << res_toysCLs_calculator->GetExpectedUpperLimit(1) << endl ;
outStream.close() ;
*/
cout << "End of frequentist " << time(NULL) << endl;
return ;
}
示例2: Error
//.........这里部分代码省略.........
MaxLikelihoodEstimateTestStat maxll(*sbModel->GetPdf(),*poi);
NumEventsTestStat nevtts;
AsymptoticCalculator::SetPrintLevel(mPrintLevel);
// create the HypoTest calculator class
HypoTestCalculatorGeneric * hc = 0;
if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
else if (type == 1) hc = new HybridCalculator(*data, *bModel, *sbModel);
// else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false, mAsimovBins);
// else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true, mAsimovBins); // for using Asimov data generated with nominal values
else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false );
else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true ); // for using Asimov data generated with nominal values
else {
Error("StandardHypoTestInvDemo","Invalid - calculator type = %d supported values are only :\n\t\t\t 0 (Frequentist) , 1 (Hybrid) , 2 (Asymptotic) ",type);
return 0;
}
// set the test statistic
TestStatistic * testStat = 0;
if (testStatType == 0) testStat = &slrts;
if (testStatType == 1 || testStatType == 11) testStat = &ropl;
if (testStatType == 2 || testStatType == 3 || testStatType == 4) testStat = &profll;
if (testStatType == 5) testStat = &maxll;
if (testStatType == 6) testStat = &nevtts;
if (testStat == 0) {
Error("StandardHypoTestInvDemo","Invalid - test statistic type = %d supported values are only :\n\t\t\t 0 (SLR) , 1 (Tevatron) , 2 (PLR), 3 (PLR1), 4(MLE)",testStatType);
return 0;
}
ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
if (toymcs && (type == 0 || type == 1) ) {
// look if pdf is number counting or extended
if (sbModel->GetPdf()->canBeExtended() ) {
if (useNumberCounting) Warning("StandardHypoTestInvDemo","Pdf is extended: but number counting flag is set: ignore it ");
}
else {
// for not extended pdf
if (!useNumberCounting ) {
int nEvents = data->numEntries();
Info("StandardHypoTestInvDemo","Pdf is not extended: number of events to generate taken from observed data set is %d",nEvents);
toymcs->SetNEventsPerToy(nEvents);
}
else {
Info("StandardHypoTestInvDemo","using a number counting pdf");
toymcs->SetNEventsPerToy(1);
}
}
toymcs->SetTestStatistic(testStat);
if (data->isWeighted() && !mGenerateBinned) {
Info("StandardHypoTestInvDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set mGenerateBinned to true\n",data->numEntries(), data->sumEntries());
}
toymcs->SetGenerateBinned(mGenerateBinned);
toymcs->SetUseMultiGen(mOptimize);
if (mGenerateBinned && sbModel->GetObservables()->getSize() > 2) {
Warning("StandardHypoTestInvDemo","generate binned is activated but the number of ovservable is %d. Too much memory could be needed for allocating all the bins",sbModel->GetObservables()->getSize() );
}
// set the random seed if needed
示例3: RunInverter
//.........这里部分代码省略.........
var->setVal(oldval);
}
else {
Error("RA2bHypoTestInvDemo","Model %s has no valid poi",modelBName);
return 0;
}
}
}
SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(),*bModel->GetPdf());
if (sbModel->GetSnapshot()) slrts.SetNullParameters(*sbModel->GetSnapshot());
if (bModel->GetSnapshot()) slrts.SetAltParameters(*bModel->GetSnapshot());
// ratio of profile likelihood - need to pass snapshot for the alt
RatioOfProfiledLikelihoodsTestStat
ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
ropl.SetSubtractMLE(false);
//MyProfileLikelihoodTestStat profll(*sbModel->GetPdf());
ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
if (testStatType == 3) profll.SetOneSided(1);
if (optimize) profll.SetReuseNLL(true);
TestStatistic * testStat = &slrts;
if (testStatType == 1) testStat = &ropl;
if (testStatType == 2 || testStatType == 3) testStat = &profll;
HypoTestCalculatorGeneric * hc = 0;
if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
else hc = new HybridCalculator(*data, *bModel, *sbModel);
ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
//=== DEBUG
///// toymcs->SetWS( w ) ;
//=== DEBUG
toymcs->SetNEventsPerToy(1);
toymcs->SetTestStatistic(testStat);
if (optimize) toymcs->SetUseMultiGen(true);
if (type == 1) {
HybridCalculator *hhc = (HybridCalculator*) hc;
hhc->SetToys(ntoys,ntoys);
// check for nuisance prior pdf
if (bModel->GetPriorPdf() && sbModel->GetPriorPdf() ) {
hhc->ForcePriorNuisanceAlt(*bModel->GetPriorPdf());
hhc->ForcePriorNuisanceNull(*sbModel->GetPriorPdf());
}
else {
if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() ) {
Error("RA2bHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified");
return 0;
}
}
}
else
((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys);
// Get the result
RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);
TStopwatch tw; tw.Start();
示例4: OneSidedFrequentistUpperLimitWithBands
//.........这里部分代码省略.........
}
// -------------------------------------------------------
// Now get the POI for convenience
// you may want to adjust the range of your POI
RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
/* firstPOI->setMin(0);*/
/* firstPOI->setMax(10);*/
// --------------------------------------------
// Create and use the FeldmanCousins tool
// to find and plot the 95% confidence interval
// on the parameter of interest as specified
// in the model config
// REMEMBER, we will change the test statistic
// so this is NOT a Feldman-Cousins interval
FeldmanCousins fc(*data,*mc);
fc.SetConfidenceLevel(confidenceLevel);
/* fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt*/
/* fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expected limits*/
fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
fc.CreateConfBelt(true); // save the information in the belt for plotting
// -------------------------------------------------------
// Feldman-Cousins is a unified limit by definition
// but the tool takes care of a few things for us like which values
// of the nuisance parameters should be used to generate toys.
// so let's just change the test statistic and realize this is
// no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
/* ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/
/* fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/
/* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */
ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
testStat->SetOneSided(true);
// Since this tool needs to throw toy MC the PDF needs to be
// extended or the tool needs to know how many entries in a dataset
// per pseudo experiment.
// In the 'number counting form' where the entries in the dataset
// are counts, and not values of discriminating variables, the
// datasets typically only have one entry and the PDF is not
// extended.
if(!mc->GetPdf()->canBeExtended()){
if(data->numEntries()==1)
fc.FluctuateNumDataEntries(false);
else
cout <<"Not sure what to do about this model" <<endl;
}
// We can use PROOF to speed things along in parallel
// However, the test statistic has to be installed on the workers
// so either turn off PROOF or include the modified test statistic
// in your `$ROOTSYS/roofit/roostats/inc` directory,
// add the additional line to the LinkDef.h file,
// and recompile root.
if (useProof) {
ProofConfig pc(*w, nworkers, "", false);
toymcsampler->SetProofConfig(&pc); // enable proof
}
if(mc->GetGlobalObservables()){
cout << "will use global observables for unconditional ensemble"<<endl;
mc->GetGlobalObservables()->Print();
toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
示例5: OneSidedFrequentistUpperLimitWithBands_intermediate
//.........这里部分代码省略.........
mc->Print();
/////////////////////////////////////////////////////////////
// Now get the POI for convenience
// you may want to adjust the range of your POI
////////////////////////////////////////////////////////////
RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
// firstPOI->setMin(0);
// firstPOI->setMax(10);
/////////////////////////////////////////////
// create and use the FeldmanCousins tool
// to find and plot the 95% confidence interval
// on the parameter of interest as specified
// in the model config
// REMEMBER, we will change the test statistic
// so this is NOT a Feldman-Cousins interval
FeldmanCousins fc(*data,*mc);
fc.SetConfidenceLevel(confidenceLevel);
fc.AdditionalNToysFactor(additionalToysFac); // improve sampling that defines confidence belt
// fc.UseAdaptiveSampling(true); // speed it up a bit, but don't use for expectd limits
fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
fc.CreateConfBelt(true); // save the information in the belt for plotting
/////////////////////////////////////////////
// Feldman-Cousins is a unified limit by definition
// but the tool takes care of a few things for us like which values
// of the nuisance parameters should be used to generate toys.
// so let's just change the test statistic and realize this is
// no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
// ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());
// fc.GetTestStatSampler()->SetTestStatistic(&onesided);
// ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true);
ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
testStat->SetOneSided(true);
// test speedups:
testStat->SetReuseNLL(true);
// toymcsampler->setUseMultiGen(true); // not fully validated
// Since this tool needs to throw toy MC the PDF needs to be
// extended or the tool needs to know how many entries in a dataset
// per pseudo experiment.
// In the 'number counting form' where the entries in the dataset
// are counts, and not values of discriminating variables, the
// datasets typically only have one entry and the PDF is not
// extended.
if(!mc->GetPdf()->canBeExtended()){
if(data->numEntries()==1)
fc.FluctuateNumDataEntries(false);
else
cout <<"Not sure what to do about this model" <<endl;
}
// We can use PROOF to speed things along in parallel
ProofConfig pc(*w, 4, "",false);
if(mc->GetGlobalObservables()){
cout << "will use global observables for unconditional ensemble"<<endl;
mc->GetGlobalObservables()->Print();
toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
}
toymcsampler->SetProofConfig(&pc); // enable proof
开发者ID:gerbaudo,项目名称:hlfv-fitmodel,代码行数:65,代码来源:OneSidedFrequentistUpperLimitWithBands_intermediate.C
示例6: statTest
void statTest(double mu_pe, double mu_hyp, ModelConfig *mc , RooDataSet *data ){
int nToyMC = 5;
// set roofit seed
RooRandom::randomGenerator()->SetSeed();
cout << endl;
cout << endl;
cout << "Will generate " << nToyMC << " pseudo-experiments for : " << endl;
cout << " - mu[pseudo-data] = " << mu_pe << endl;
cout << " - mu[stat-test] = " << mu_hyp << endl;
cout << endl;
// Check number of POI (for Wald approx)
RooArgSet *ParamOfInterest = (RooArgSet*) mc->GetParametersOfInterest();
int nPOI = ParamOfInterest->getSize();
if(nPOI>1){
cout <<"not sure what to do with other parameters of interest, but here are their values"<<endl;
mc->GetParametersOfInterest()->Print("v");
}
RooRealVar* firstPOI = (RooRealVar*) ParamOfInterest->first();
RooAbsPdf *simPdf = (mc->GetPdf());
//PrintAllParametersAndValues( *mc->GetGlobalObservables() );
//PrintAllParametersAndValues( *mc->GetObservables() );
firstPOI->setVal(0.0); // FIXME
//simPdf->fitTo( *data, Hesse(kTRUE), Minos(kTRUE), PrintLevel(1) );
simPdf->fitTo( *data );
// set up the sampler
ToyMCSampler sampler;
sampler.SetPdf(*mc->GetPdf());
sampler.SetObservables(*mc->GetObservables());
sampler.SetNToys(nToyMC);
sampler.SetGlobalObservables(*mc->GetGlobalObservables());
sampler.SetParametersForTestStat(*mc->GetParametersOfInterest());
RooArgSet* poiset = dynamic_cast<RooArgSet*>(ParamOfInterest->Clone());
// only unconditional fit
MinNLLTestStat *minNll = new MinNLLTestStat(*mc->GetPdf());
minNll->EnableDetailedOutput(true);
sampler.AddTestStatistic(minNll);
// enable PROOF if desired
//ProofConfig pc(*w, 8, "workers=8", kFALSE);
//sampler.SetProofConfig(&pc);
// evaluate the test statistics - this is where most of our time will be spent
cout << "Generating " << nToyMC << " toys...this will take a few minutes" << endl;
TStopwatch *mn_t = new TStopwatch;
mn_t->Start();
RooDataSet* sd = sampler.GetSamplingDistributions(*poiset);
cout << "Toy generation complete :" << endl;
// stop timing
mn_t->Stop();
cout << " total CPU time: " << mn_t->CpuTime() << endl;
cout << " total real time: " << mn_t->RealTime() << endl;
// now sd contains all information about our test statistics, including detailed output
// we might eg. want to explore the results either directly, or first converting to a TTree
// do the conversion
TFile f("mytoys.root", "RECREATE");
TTree *toyTree = RooStats::GetAsTTree("toyTree", "TTree created from test statistics", *sd);
// save result to file, but in general do whatever you like
f.cd();
toyTree->Write();
f.Close();
/*
TFile* tmpFile = new TFile("mytoys.root","READ");
TTree* myTree = (TTree*)tmpFile->Get("toyTree");
// get boundaries for histograms
TIter nextLeaf( (myTree->GetListOfLeaves())->MakeIterator() );
TObject* leafObj(0);
map<TString, float> xMaxs;
map<TString, float> xMins;
for(int i(0); i<myTree->GetEntries(); i++) {
myTree->GetEntry(i);
nextLeaf = ( (myTree->GetListOfLeaves())->MakeIterator() );
while( (leafObj = nextLeaf.Next()) ) {
TString name(leafObj->GetName());
float value(myTree->GetLeaf( leafObj->GetName() )->GetValue());
if(value > xMaxs[name]) { xMaxs[name] = value; }
if(value < xMins[name]) { xMins[name] = value; }
} // loop over leaves
} // loop over tree entries
// plot everything in the tree
myTree->GetEntry(0);
nextLeaf = ( (myTree->GetListOfLeaves())->MakeIterator() );
leafObj = 0;
// make a histogram per leaf
map<TString, TH1F*> hists;
myTree->GetEntry(0);
while( (leafObj = nextLeaf.Next()) ) {
if(!leafObj) { continue; }
//cout << leafObj->GetName() << endl;
TString name(leafObj->GetName());
// special ones : fit related things
//.........这里部分代码省略.........
示例7: StandardHypoTestDemo
//.........这里部分代码省略.........
if (bModel->GetPdf() && bModel->GetObservables() )
nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel");
else
nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
}
if (!nuisPdf ) {
if (bModel->GetPriorPdf()) {
nuisPdf = bModel->GetPriorPdf();
Info("StandardHypoTestDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());
}
else {
Error("StandardHypoTestDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
return;
}
}
assert(nuisPdf);
Info("StandardHypoTestDemo","Using as nuisance Pdf ... " );
nuisPdf->Print();
const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
RooArgSet * np = nuisPdf->getObservables(*nuisParams);
if (np->getSize() == 0) {
Warning("StandardHypoTestDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
}
delete np;
((HybridCalculator*)hypoCalc)->ForcePriorNuisanceAlt(*nuisPdf);
((HybridCalculator*)hypoCalc)->ForcePriorNuisanceNull(*nuisPdf);
}
// hypoCalc->ForcePriorNuisanceAlt(*sbModel->GetPriorPdf());
// hypoCalc->ForcePriorNuisanceNull(*bModel->GetPriorPdf());
ToyMCSampler * sampler = (ToyMCSampler *)hypoCalc->GetTestStatSampler();
if (sampler && (calcType == 0 || calcType == 1) ) {
// look if pdf is number counting or extended
if (sbModel->GetPdf()->canBeExtended() ) {
if (useNC) Warning("StandardHypoTestDemo","Pdf is extended: but number counting flag is set: ignore it ");
}
else {
// for not extended pdf
if (!useNC) {
int nEvents = data->numEntries();
Info("StandardHypoTestDemo","Pdf is not extended: number of events to generate taken from observed data set is %d",nEvents);
sampler->SetNEventsPerToy(nEvents);
}
else {
Info("StandardHypoTestDemo","using a number counting pdf");
sampler->SetNEventsPerToy(1);
}
}
if (data->isWeighted() && !generateBinned) {
Info("StandardHypoTestDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set generateBinned to true\n",data->numEntries(), data->sumEntries());
}
if (generateBinned) sampler->SetGenerateBinned(generateBinned);
// set the test statistic
if (testStatType == 0) sampler->SetTestStatistic(slrts);
if (testStatType == 1) sampler->SetTestStatistic(ropl);
if (testStatType == 2 || testStatType == 3) sampler->SetTestStatistic(profll);
}
示例8: fit_toy
result fit_toy(RooWorkspace* wspace, int n, const RooArgSet* globals) {
RooRandom::randomGenerator()->SetSeed(0);
// TFile f(filename);
// RooWorkspace *wspace = (RooWorkspace*)f.Get("combined");
ModelConfig* model = (ModelConfig*)wspace->obj("ModelConfig");
RooAbsPdf* pdf;
pdf = model->GetPdf();
RooAbsPdf* top_constraint = (RooAbsPdf*)wspace->obj("top_ratio_constraint");
RooAbsPdf* vv_constraint = (RooAbsPdf*)wspace->obj("vv_ratio_constraint");
RooAbsPdf* top_vv_constraint_sf = (RooAbsPdf*)wspace->obj("top_vv_ratio_sf_constraint");
RooAbsPdf* top_vv_constraint_of = (RooAbsPdf*)wspace->obj("top_vv_ratio_of_constraint");
// generate constraint global observables
RooRealVar *nom_top_ratio = (RooRealVar*)wspace->obj("nom_top_ratio");
nom_top_ratio->setRange(0, 100);
RooRealVar *nom_vv_ratio = (RooRealVar*)wspace->obj("nom_vv_ratio");
nom_vv_ratio->setRange(0,100);
RooRealVar *nom_top_vv_ratio_sf = (RooRealVar*)wspace->obj("nom_top_vv_ratio_sf");
nom_top_vv_ratio_sf->setRange(0,100);
RooRealVar *nom_top_vv_ratio_of = (RooRealVar*)wspace->obj("nom_top_vv_ratio_of");
nom_top_vv_ratio_of->setRange(0,100);
RooDataSet *nom_top_generated = top_constraint->generateSimGlobal(RooArgSet(*nom_top_ratio), 1);
nom_top_ratio->setVal(((RooRealVar*)nom_top_generated->get(0)->find("nom_top_ratio"))->getVal());
RooDataSet *nom_vv_generated = vv_constraint->generateSimGlobal(RooArgSet(*nom_vv_ratio), 1);
nom_vv_ratio->setVal(((RooRealVar*)nom_vv_generated->get(0)->find("nom_vv_ratio"))->getVal());
RooDataSet *nom_top_vv_sf_generated = top_vv_constraint_sf->generateSimGlobal(RooArgSet(*nom_top_vv_ratio_sf), 1);
nom_top_vv_ratio_sf->setVal(((RooRealVar*)nom_top_vv_sf_generated->get(0)->find("nom_top_vv_ratio_sf"))->getVal());
RooDataSet *nom_top_vv_of_generated = top_vv_constraint_of->generateSimGlobal(RooArgSet(*nom_top_vv_ratio_of), 1);
nom_top_vv_ratio_of->setVal(((RooRealVar*)nom_top_vv_of_generated->get(0)->find("nom_top_vv_ratio_of"))->getVal());
NumEventsTestStat* dummy = new NumEventsTestStat(*pdf);
ToyMCSampler* mc = new ToyMCSampler(*dummy, 1);
mc->SetPdf(*pdf);
mc->SetObservables(*model->GetObservables());
mc->SetGlobalObservables(*globals);
mc->SetNuisanceParameters(*model->GetNuisanceParameters());
mc->SetParametersForTestStat(*model->GetParametersOfInterest());
mc->SetNEventsPerToy(n);
RooArgSet constr;
constr.add(*(model->GetNuisanceParameters()));
RemoveConstantParameters(&constr);
RooDataSet* toy_data = (RooDataSet*)mc->GenerateToyData(*const_cast<RooArgSet*>(model->GetSnapshot()));
RooFitResult *res = pdf->fitTo(*toy_data, Constrain(constr), PrintLevel(0), Save(),
Range("fitRange"), InitialHesse(),
ExternalConstraints(RooArgSet(*top_constraint, *vv_constraint, *top_vv_constraint_sf, *top_vv_constraint_of)));
result yield = get_results(wspace, res);
yield.of.generated_sum.val = toy_data->sumEntries("(channelCat==channelCat::of) & (obs_x_of>120)");
yield.sf.generated_sum.val = toy_data->sumEntries("(channelCat==channelCat::sf) & (obs_x_sf>120)");
delete mc;
delete dummy;
// f.Close();
return yield;
}
示例9: HypoTestInvDemo
void HypoTestInvDemo(const char * fileName ="GausModel_b.root",
const char * wsName = "w",
const char * modelSBName = "model_sb",
const char * modelBName = "model_b",
const char * dataName = "data_obs",
int type = 0, // calculator type
int testStatType = 0, // test stat type
int npoints = 10,
int ntoys=1000,
bool useCls = true )
{
/*
type = 0 Freq calculator
type = 1 Hybrid
testStatType = 0 LEP
= 1 Tevatron
= 2 PL
*/
if (fileName==0) {
std::cout << "give input filename " << std::endl;
return;
}
TFile * file = new TFile(fileName);
RooWorkspace * w = dynamic_cast<RooWorkspace*>( file->Get(wsName) );
if (!w) {
return;
}
w->Print();
RooAbsData * data = w->data(dataName);
if (!data) {
Error("HypoTestDemo","Not existing data %s",dataName);
}
// get models from WS
// get the modelConfig out of the file
ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);
SimpleLikelihoodRatioTestStat slrts(*bModel->GetPdf(),*sbModel->GetPdf());
slrts.SetNullParameters(*bModel->GetSnapshot());
slrts.SetAltParameters(*sbModel->GetSnapshot());
RatioOfProfiledLikelihoodsTestStat
ropl(*bModel->GetPdf(), *sbModel->GetPdf(), sbModel->GetSnapshot());
ropl.SetSubtractMLE(false);
ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
profll.SetOneSided(0);
TestStatistic * testStat = &slrts;
if (testStatType == 1) testStat = &ropl;
if (testStatType == 2) testStat = &profll;
HypoTestCalculatorGeneric * hc = 0;
if (type == 0) hc = new FrequentistCalculator(*data, *sbModel, *bModel);
else new HybridCalculator(*data, *sbModel, *bModel);
ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
//toymcs->SetNEventsPerToy(1);
toymcs->SetTestStatistic(testStat);
if (type == 1) {
HybridCalculator *hhc = (HybridCalculator*) hc;
hhc->SetToys(ntoys,ntoys);
// hhc->ForcePriorNuisanceAlt(*pdfNuis);
// hhc->ForcePriorNuisanceNull(*pdfNuis);
}
else
((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys);
// Get the result
RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);
TStopwatch tw; tw.Start();
const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
RooRealVar *poi = (RooRealVar*)poiSet->first();
// fit the data first
sbModel->GetPdf()->fitTo(*data);
double poihat = poi->getVal();
//poi->setVal(30);
//poi->setError(10);
HypoTestInverter calc(*hc);
// GENA: for two-sided interval
//calc.SetConfidenceLevel(0.95);
// GENA: for 95% upper limit
//.........这里部分代码省略.........