本文整理汇总了C++中TimeInfo::start方法的典型用法代码示例。如果您正苦于以下问题:C++ TimeInfo::start方法的具体用法?C++ TimeInfo::start怎么用?C++ TimeInfo::start使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TimeInfo
的用法示例。
在下文中一共展示了TimeInfo::start方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main (int argc, char* argv[])
{
/** We create a command line parser. */
OptionsParser parser;
parser.push_back (new OptionOneParam (STR_URI_INPUT, "graph file", true));
IProperties* params = 0;
try {
/** We parse the user options. */
params = parser.parse (argc, argv);
}
catch (OptionFailure& e)
{
e.getParser().displayErrors (stdout);
e.getParser().displayHelp (stdout);
return EXIT_FAILURE;
}
// We create the graph with the bank and other options
Graph graph = Graph::load (params->getStr(STR_URI_INPUT));
// We create a graph marker.
GraphMarker<BranchingNode> marker (graph);
// We create an object for Breadth First Search for the de Bruijn graph.
BFS<BranchingNode> bfs (graph);
// We want to compute the distribution of connected components of the branching nodes.
// - key is a connected component class (for a given number of branching nodes for this component)
// - value is the number of times this component class occurs in the branching sub graph
map<size_t,Entry> distrib;
// We get an iterator for all nodes of the graph. We use a progress iterator to get some progress feedback
ProgressGraphIterator<BranchingNode,ProgressTimer> itBranching (graph.iterator<BranchingNode>(), "statistics");
// We want to know the number of connected components
size_t nbConnectedComponents = 0;
// We define some kind of unique identifier for a couple (indegree,outdegree)
map <InOut_t, size_t> topology;
size_t simplePathSizeMin = ~0;
size_t simplePathSizeMax = 0;
// We want time duration of the iteration
TimeInfo ti;
ti.start ("compute");
// We loop the branching nodes
for (itBranching.first(); !itBranching.isDone(); itBranching.next())
{
// We get branching nodes neighbors for the current branching node.
Graph::Vector<BranchingEdge> successors = graph.successors <BranchingEdge> (*itBranching);
Graph::Vector<BranchingEdge> predecessors = graph.predecessors<BranchingEdge> (*itBranching);
// We increase the occurrences number for the current couple (in/out) neighbors
topology [make_pair(predecessors.size(), successors.size())] ++;
// We loop the in/out neighbors and update min/max simple path size
for (size_t i=0; i<successors.size(); i++)
{
simplePathSizeMax = std::max (simplePathSizeMax, successors[i].distance);
simplePathSizeMin = std::min (simplePathSizeMin, successors[i].distance);
}
for (size_t i=0; i<predecessors.size(); i++)
{
simplePathSizeMax = std::max (simplePathSizeMax, predecessors[i].distance);
simplePathSizeMin = std::min (simplePathSizeMin, predecessors[i].distance);
}
// We skip already visited nodes.
if (marker.isMarked (*itBranching)) {
continue;
}
// We launch the breadth first search; we get as a result the set of branching nodes in this component
const set<BranchingNode>& component = bfs.run (*itBranching);
// We mark the nodes for this connected component
marker.mark (component);
// We update our distribution
distrib[component.size()].nbOccurs += 1;
// We update the number of connected components.
nbConnectedComponents++;
}
ti.stop ("compute");
// We compute the total number of branching nodes in all connected components.
size_t sumOccurs = 0;
size_t sumKmers = 0;
for (map<size_t,Entry>::iterator it = distrib.begin(); it != distrib.end(); it++)
{
sumOccurs += it->first*it->second.nbOccurs;
sumKmers += it->second.nbKmers;
}
//.........这里部分代码省略.........
示例2: main
int main (int argc, char* argv[])
{
/** We create a command line parser. */
OptionsParser parser ("GraphStats");
parser.push_back (new OptionOneParam (STR_URI_GRAPH, "graph input", true));
try
{
/** We parse the user options. */
IProperties* options = parser.parse (argc, argv);
// We load the graph
Graph graph = Graph::load (options->getStr(STR_URI_GRAPH));
// We create a graph marker.
GraphMarker marker (graph);
// We create an object for Breadth First Search for the de Bruijn graph.
BFS bfs (graph);
// We want to compute the distribution of connected components of the branching nodes.
// - key is a connected component class (for a given number of branching nodes for this component)
// - value is the number of times this component class occurs in the branching sub graph
map<size_t,size_t> distrib;
// We get an iterator for all nodes of the graph. We use a progress iterator to get some progress feedback
ProgressGraphIterator<BranchingNode,ProgressTimer> itBranching (graph.iteratorBranching(), "statistics");
// We want time duration of the iteration
TimeInfo ti;
ti.start ("compute");
// We need to keep each connected component.
list<set<BranchingNode> > components;
// We loop the branching nodes
for (itBranching.first(); !itBranching.isDone(); itBranching.next())
{
// We skip already visited nodes.
if (marker.isMarked (*itBranching)) { continue; }
// We launch the breadth first search; we get as a result the set of branching nodes in this component
const set<BranchingNode>& component = bfs.run (*itBranching);
// We memorize the component
components.push_back (component);
// We mark the nodes for this connected component
marker.mark (component);
// We update our distribution
distrib[component.size()] ++;
}
ti.stop ("compute");
// We compute the total number of branching nodes in all connected components.
size_t sum = 0; for (map<size_t,size_t>::iterator it = distrib.begin(); it != distrib.end(); it++) { sum += it->first*it->second; }
// Note: it must be equal to the number of branching nodes of the graph
assert (sum == itBranching.size());
size_t idx1=0;
size_t cc=0;
// We check that each component has no intersection with all other components.
// Note: this check may take a long time since we have N^2 intersections to compute.
for (list<set<BranchingNode> >::iterator it1 = components.begin(); it1 != components.end(); it1++, idx1++)
{
size_t idx2=0;
for (list<set<BranchingNode> >::iterator it2 = components.begin(); it2 != components.end(); it2++, idx2++)
{
if (it1 != it2)
{
set<BranchingNode> inter;
set_intersection (it1->begin(),it1->end(),it2->begin(),it2->end(), std::inserter(inter,inter.begin()));
if (inter.size()!=0) { printf ("ERROR, intersection should be empty...\n"); exit(EXIT_FAILURE); }
}
if (++cc % 50 == 0)
{
cc = 0;
printf ("[check] %.1f %.1f\r", 100.0*(float)idx1/(float)components.size(), 100.0*(float)idx2/(float)components.size());
fflush (stdout);
}
}
}
printf ("\n");
// We aggregate the computed information
Properties props ("connected_components");
props.add (1, "graph_name", "%s", graph.getName().c_str());
props.add (1, "nb_branching_nodes", "%d", sum);
props.add (1, "nb_connected_components", "%d", distrib.size());
for (map<size_t,size_t>::iterator it = distrib.begin(); it!=distrib.end(); it++)
{
props.add (2, "component");
props.add (3, "nb_nodes", "%d", it->first);
props.add (3, "nb_occurs", "%d", it->second);
props.add (3, "freq_nodes", "%f", 100.0*(float)(it->first*it->second) / (float)sum);
//.........这里部分代码省略.........