本文整理汇总了C++中TimeInfo::getProperties方法的典型用法代码示例。如果您正苦于以下问题:C++ TimeInfo::getProperties方法的具体用法?C++ TimeInfo::getProperties怎么用?C++ TimeInfo::getProperties使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TimeInfo
的用法示例。
在下文中一共展示了TimeInfo::getProperties方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
for (size_t i=0; i<predecessors.size(); i++)
{
simplePathSizeMax = std::max (simplePathSizeMax, predecessors[i].distance);
simplePathSizeMin = std::min (simplePathSizeMin, predecessors[i].distance);
}
// We skip already visited nodes.
if (marker.isMarked (*itBranching)) {
continue;
}
// We launch the breadth first search; we get as a result the set of branching nodes in this component
const set<BranchingNode>& component = bfs.run (*itBranching);
// We mark the nodes for this connected component
marker.mark (component);
// We update our distribution
distrib[component.size()].nbOccurs += 1;
// We update the number of connected components.
nbConnectedComponents++;
}
ti.stop ("compute");
// We compute the total number of branching nodes in all connected components.
size_t sumOccurs = 0;
size_t sumKmers = 0;
for (map<size_t,Entry>::iterator it = distrib.begin(); it != distrib.end(); it++)
{
sumOccurs += it->first*it->second.nbOccurs;
sumKmers += it->second.nbKmers;
}
// We sort the statistics by decreasing occurrence numbers. Since map have its own ordering, we need to put all
// the data into a vector and sort it with our own sorting criteria.
vector < pair<InOut_t,size_t> > stats;
for (map <InOut_t, size_t>::iterator it = topology.begin(); it != topology.end(); it++) {
stats.push_back (*it);
}
sort (stats.begin(), stats.end(), CompareFct);
// Note: it must be equal to the number of branching nodes of the graph
assert (sumOccurs == itBranching.size());
// We aggregate the computed information
Properties props ("topology");
props.add (1, "graph");
props.add (2, "name", "%s", graph.getName().c_str());
props.add (2, "db_input", "%s", graph.getInfo().getStr("input").c_str());
props.add (2, "db_nb_seq", "%d", graph.getInfo().getInt("sequences_number"));
props.add (2, "db_size", "%d", graph.getInfo().getInt("sequences_size"));
props.add (2, "kmer_size", "%d", graph.getInfo().getInt("kmer_size"));
props.add (2, "kmer_nks", "%d", graph.getInfo().getInt("nks"));
props.add (2, "nb_nodes", "%d", graph.getInfo().getInt("kmers_nb_solid"));
props.add (2, "nb_branching_nodes", "%d", graph.getInfo().getInt("nb_branching"));
props.add (2, "percent_branching_nodes", "%.1f",
graph.getInfo().getInt("kmers_nb_solid") > 0 ?
100.0 * (float)graph.getInfo().getInt("nb_branching") / (float) graph.getInfo().getInt("kmers_nb_solid") : 0
);
props.add (1, "branching_nodes");
props.add (2, "simple_path");
props.add (3, "size_min", "%d", simplePathSizeMin);
props.add (3, "size_max", "%d", simplePathSizeMax);
props.add (2, "neighborhoods");
for (size_t i=0; i<stats.size(); i++)
{
props.add (3, "neighborhood", "in=%d out=%d", stats[i].first.first, stats[i].first.second);
props.add (4, "nb_bnodes", "%d", stats[i].second);
props.add (4, "percentage", "%5.2f", itBranching.size() > 0 ?
100.0*(float)stats[i].second / (float)itBranching.size() : 0
);
}
props.add (2, "connected_components");
props.add (3, "nb_classes", "%d", distrib.size());
props.add (3, "nb_components", "%d", nbConnectedComponents);
for (map<size_t,Entry>::iterator it = distrib.begin(); it!=distrib.end(); it++)
{
props.add (3, "component_class");
props.add (4, "nb_occurs", "%d", it->second.nbOccurs);
props.add (4, "nb_bnodes", "%d", it->first);
props.add (4, "freq_bnodes", "%f", sumOccurs > 0 ?
100.0*(float)(it->first*it->second.nbOccurs) / (float)sumOccurs : 0
);
}
props.add (1, ti.getProperties("time"));
// We dump the results in a XML file in the current directory
XmlDumpPropertiesVisitor v (graph.getName() + ".xml", false);
props.accept (&v);
return EXIT_SUCCESS;
}
示例2: main
//.........这里部分代码省略.........
// We want to compute the distribution of connected components of the branching nodes.
// - key is a connected component class (for a given number of branching nodes for this component)
// - value is the number of times this component class occurs in the branching sub graph
map<size_t,size_t> distrib;
// We get an iterator for all nodes of the graph. We use a progress iterator to get some progress feedback
ProgressGraphIterator<BranchingNode,ProgressTimer> itBranching (graph.iteratorBranching(), "statistics");
// We want time duration of the iteration
TimeInfo ti;
ti.start ("compute");
// We need to keep each connected component.
list<set<BranchingNode> > components;
// We loop the branching nodes
for (itBranching.first(); !itBranching.isDone(); itBranching.next())
{
// We skip already visited nodes.
if (marker.isMarked (*itBranching)) { continue; }
// We launch the breadth first search; we get as a result the set of branching nodes in this component
const set<BranchingNode>& component = bfs.run (*itBranching);
// We memorize the component
components.push_back (component);
// We mark the nodes for this connected component
marker.mark (component);
// We update our distribution
distrib[component.size()] ++;
}
ti.stop ("compute");
// We compute the total number of branching nodes in all connected components.
size_t sum = 0; for (map<size_t,size_t>::iterator it = distrib.begin(); it != distrib.end(); it++) { sum += it->first*it->second; }
// Note: it must be equal to the number of branching nodes of the graph
assert (sum == itBranching.size());
size_t idx1=0;
size_t cc=0;
// We check that each component has no intersection with all other components.
// Note: this check may take a long time since we have N^2 intersections to compute.
for (list<set<BranchingNode> >::iterator it1 = components.begin(); it1 != components.end(); it1++, idx1++)
{
size_t idx2=0;
for (list<set<BranchingNode> >::iterator it2 = components.begin(); it2 != components.end(); it2++, idx2++)
{
if (it1 != it2)
{
set<BranchingNode> inter;
set_intersection (it1->begin(),it1->end(),it2->begin(),it2->end(), std::inserter(inter,inter.begin()));
if (inter.size()!=0) { printf ("ERROR, intersection should be empty...\n"); exit(EXIT_FAILURE); }
}
if (++cc % 50 == 0)
{
cc = 0;
printf ("[check] %.1f %.1f\r", 100.0*(float)idx1/(float)components.size(), 100.0*(float)idx2/(float)components.size());
fflush (stdout);
}
}
}
printf ("\n");
// We aggregate the computed information
Properties props ("connected_components");
props.add (1, "graph_name", "%s", graph.getName().c_str());
props.add (1, "nb_branching_nodes", "%d", sum);
props.add (1, "nb_connected_components", "%d", distrib.size());
for (map<size_t,size_t>::iterator it = distrib.begin(); it!=distrib.end(); it++)
{
props.add (2, "component");
props.add (3, "nb_nodes", "%d", it->first);
props.add (3, "nb_occurs", "%d", it->second);
props.add (3, "freq_nodes", "%f", 100.0*(float)(it->first*it->second) / (float)sum);
props.add (3, "freq_occurs", "%f", 100.0*(float)it->second / (float)sum);
}
props.add (1, ti.getProperties("time"));
// We dump the results in a XML file in the current directory
XmlDumpPropertiesVisitor v (graph.getName() + ".xml", false);
props.accept (&v);
}
catch (OptionFailure& e)
{
return e.displayErrors (std::cout);
}
catch (Exception& e)
{
std::cerr << "EXCEPTION: " << e.getMessage() << std::endl;
}
return EXIT_SUCCESS;
}