当前位置: 首页>>代码示例>>C++>>正文


C++ TheMatrix::Norm2方法代码示例

本文整理汇总了C++中TheMatrix::Norm2方法的典型用法代码示例。如果您正苦于以下问题:C++ TheMatrix::Norm2方法的具体用法?C++ TheMatrix::Norm2怎么用?C++ TheMatrix::Norm2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TheMatrix的用法示例。


在下文中一共展示了TheMatrix::Norm2方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: DisplayAfterTrainingInfo

void CBMRM::DisplayAfterTrainingInfo(unsigned int iter, double finalExactObjVal, 
                                      double approxObjVal, double loss, 
                                      TheMatrix& w_best, CTimer& lossAndGradientTime,
                                      CTimer& innerSolverTime, CTimer& totalTime)
{
   // legends
   if(verbosity >= 1) 
   {
      printf("\n[Legends]\n");
      if(verbosity > 1)
         printf("pobj: primal objective function value"
                "\naobj: approximate objective function value\n");

      printf("gam: gamma (approximation error) "
             "\neps: lower bound on gam "
             "\nloss: loss function value "
             "\nreg: regularizer value\n");
   }
   
   double norm1 = 0, norm2 = 0, norminf = 0;
   w_best.Norm1(norm1);
   w_best.Norm2(norm2);
   w_best.NormInf(norminf);
   
   printf("\nNote: the final w is the w_t where J(w_t) is the smallest.\n");
   printf("No. of iterations:  %d\n",iter);
   printf("Primal obj. val.: %.6e\n",finalExactObjVal);
   printf("Approx obj. val.: %.6e\n",approxObjVal);
   printf("Primal - Approx.: %.6e\n",finalExactObjVal-approxObjVal);
   printf("Loss:             %.6e\n",loss);
   printf("|w|_1:            %.6e\n",norm1);
   printf("|w|_2:            %.6e\n",norm2);
   printf("|w|_oo:           %.6e\n",norminf);
   
   
   // display timing profile
   printf("\nCPU seconds in:\n");
   printf("1. loss and gradient: %8.2f\n", lossAndGradientTime.CPUTotal());
   printf("2. solver:            %8.2f\n", innerSolverTime.CPUTotal()); 
   printf("               Total: %8.2f\n", totalTime.CPUTotal());
   printf("Wall-clock total:     %8.2f\n", totalTime.WallclockTotal());
}
开发者ID:funkey,项目名称:bmrm,代码行数:42,代码来源:bmrm.cpp

示例2: ComputeLossAndGradient


//.........这里部分代码省略.........
         find_best_label_grammer(Y[i].pos,Y[i].type, X[i], w, ybar, ybarlabel, marginloss, labelloss, 0, _data->getNumOfClass());
      else
         find_best_label(Y[i].pos,Y[i].type, X[i], w, ybar, ybarlabel, marginloss, labelloss, 0, _data->getNumOfClass());
      
      double labelloss_y = 0;
      double marginloss_y = 0;
      double labelloss_ybar = 0;
      double marginloss_ybar = 0;
      
      
      ComputeLoss(Y[i].pos,Y[i].type,ybar,ybarlabel,X[i],w,marginloss_ybar,labelloss_ybar,1);
      if(lossw[0]!=0)
         labelloss+=lossw[0];
      
      if(lastDuration>0)
      {
         marginloss = marginloss_ybar;
         labelloss = labelloss_ybar;
      }
      if(verbosity>=3)
      {					
         ComputeLoss(Y[i].pos,Y[i].type,Y[i].pos,Y[i].type,X[i],w,marginloss_y,labelloss_y,1);
         printf("dp------marginloss:%2.4f---labelloss:%2.4f------\n",marginloss,labelloss);	
         printf("ybar----marginloss:%2.4f---labelloss:%2.4f------\n",marginloss_ybar,labelloss_ybar);
         printf("y-------marginloss:%2.4f---labelloss:%2.4f------\n",marginloss_y,labelloss_y);			
         if(abs(labelloss_ybar-labelloss)>1e-5)
         {
            printf("labelloss doesn't match!\n");
            //exit(0);
         }
         if(abs(marginloss_ybar-marginloss)>1e-5)
         {
            printf("marginloss_ybar_dp:%2.4f != marginloss_ybar_computeLoss:%2.4f\n",marginloss,marginloss_ybar);
            printf("marginloss doesn't match!\n");
         }
      }
      
      // construct the gradient vector for the part of true y
      const vector<unsigned int> &y = Y[i].pos;
      const vector<unsigned int> &ylabel = Y[i].type;
      g.Zero();
      
      for(unsigned int j=0; j < y.size(); j++)
      {
         //g.Add(*(X[i].phi_1[y[j]]));
         //g.Add(*(X[i].phi_2[y[j-1]][y[j]-y[j-1]-1]));
         _data->TensorPhi1(X[i].phi_1[y[j]],ylabel[j],0,tphi_1);
         g.Add(*tphi_1);
         if(j > 0)
         {
            _data->TensorPhi2(X[i].phi_2[y[j-1]][y[j]-y[j-1]-1], ylabel[j-1], ylabel[j], 0,0,tphi_2);
            g.Add(*tphi_2);			
         }
      }
      if(y.size() > 0)
      {
         //g.Add(*(X[i].phi_2[y[y.size()-1]][X[i].len-1 - y[y.size()-1]-1]));////
         _data->TensorPhi2(X[i].phi_2[y[y.size()-1]][X[i].len - y[y.size()-1]-1 ], ylabel[y.size()-1], 0,0,0,tphi_2);
         g.Add(*tphi_2);
      }
      
      // for predicted y'
      for(unsigned int j=0; j < ybar.size(); j++)
      {  
         //grad.Add(*(X[i].phi_1[ybar[j]]));                         
         //grad.Add(*(X[i].phi_2[ybar[j-1]][ybar[j]-ybar[j-1]-1]));
         _data->TensorPhi1(X[i].phi_1[ybar[j]],ybarlabel[j],0,tphi_1);
         grad.Add(*tphi_1);
         if(j>0)			
         {
            _data->TensorPhi2(X[i].phi_2[ybar[j-1]][ybar[j]-ybar[j-1]-1], ybarlabel[j-1], ybarlabel[j], 0,0,tphi_2);
            grad.Add(*tphi_2); ////			
         }
      }
      if(ybar.size() > 0)
      {
         //grad.Add(*(X[i].phi_2[ybar[ybar.size()-1]][X[i].len-1 - ybar[ybar.size()-1]-1]));
         _data->TensorPhi2(X[i].phi_2[ybar[ybar.size()-1]][X[i].len - ybar[ybar.size()-1]-1 ], ybarlabel[ybar.size()-1], 0, 0,0,tphi_2);
         grad.Add(*tphi_2);
      }
      grad.Minus(g);
      
      
      // accumulate the loss
      w.Dot(g, w_dot_g);	
      loss = loss - w_dot_g + marginloss + labelloss;    
      
   }
   scalingFactor = 1.0/trainExNum;
   grad.Scale(scalingFactor);	
   loss *= scalingFactor;        
   
   if(verbosity)
   {
      double gnorm = 0.0;
      grad.Norm2(gnorm);
      cout << "gradient norm=" << gnorm << endl;
   }
   //Evaluate(_model);
}
开发者ID:funkey,项目名称:bmrm,代码行数:101,代码来源:smmmulticlassloss.cpp


注:本文中的TheMatrix::Norm2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。