本文整理汇总了C++中TheMatrix::Add方法的典型用法代码示例。如果您正苦于以下问题:C++ TheMatrix::Add方法的具体用法?C++ TheMatrix::Add怎么用?C++ TheMatrix::Add使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TheMatrix
的用法示例。
在下文中一共展示了TheMatrix::Add方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ComputeLossAndGradient
/** Compute loss and gradient
*/
void CSMMMulticlassLoss::ComputeLossAndGradient(double& loss, TheMatrix& grad)
{
iterNum ++;
TheMatrix &w = _model->GetW();
loss = 0;
grad.Zero();
TheMatrix g(grad, SML::DENSE);
const vector<CSeqMulticlassLabel::seqlabel_struct> &Y = _data->labels();
const vector<CSeqMulticlassFeature::seqfeature_struct> &X = _data->features();
unsigned int trainExNum = 0;
vector <int > cvmark = _data->Getcvmark();
for(unsigned int i=0; i < m; i++)
{
if(cvmark.size()!=0)
{
if(cvmark[i]!=SMM::TRAIN_DATA)
continue;
}
trainExNum ++;
//if(cvmark)
vector<unsigned int> ybar(X[i].len,0);
vector<unsigned int> ybarlabel(X[i].len,0);
double labelloss = 0;
double marginloss = 0;
double w_dot_g = 0.0;;
// find best label y' and return the score wrt to y'
if(verbosity>=2)
{
cout <<"ex:"<< i<< endl;fflush(stdout);
}
if(is_single_action_persequence)
find_best_label_grammer(Y[i].pos,Y[i].type, X[i], w, ybar, ybarlabel, marginloss, labelloss, 0, _data->getNumOfClass());
else
find_best_label(Y[i].pos,Y[i].type, X[i], w, ybar, ybarlabel, marginloss, labelloss, 0, _data->getNumOfClass());
double labelloss_y = 0;
double marginloss_y = 0;
double labelloss_ybar = 0;
double marginloss_ybar = 0;
ComputeLoss(Y[i].pos,Y[i].type,ybar,ybarlabel,X[i],w,marginloss_ybar,labelloss_ybar,1);
if(lossw[0]!=0)
labelloss+=lossw[0];
if(lastDuration>0)
{
marginloss = marginloss_ybar;
labelloss = labelloss_ybar;
}
if(verbosity>=3)
{
ComputeLoss(Y[i].pos,Y[i].type,Y[i].pos,Y[i].type,X[i],w,marginloss_y,labelloss_y,1);
printf("dp------marginloss:%2.4f---labelloss:%2.4f------\n",marginloss,labelloss);
printf("ybar----marginloss:%2.4f---labelloss:%2.4f------\n",marginloss_ybar,labelloss_ybar);
printf("y-------marginloss:%2.4f---labelloss:%2.4f------\n",marginloss_y,labelloss_y);
if(abs(labelloss_ybar-labelloss)>1e-5)
{
printf("labelloss doesn't match!\n");
//exit(0);
}
if(abs(marginloss_ybar-marginloss)>1e-5)
{
printf("marginloss_ybar_dp:%2.4f != marginloss_ybar_computeLoss:%2.4f\n",marginloss,marginloss_ybar);
printf("marginloss doesn't match!\n");
}
}
// construct the gradient vector for the part of true y
const vector<unsigned int> &y = Y[i].pos;
const vector<unsigned int> &ylabel = Y[i].type;
g.Zero();
for(unsigned int j=0; j < y.size(); j++)
{
//g.Add(*(X[i].phi_1[y[j]]));
//g.Add(*(X[i].phi_2[y[j-1]][y[j]-y[j-1]-1]));
_data->TensorPhi1(X[i].phi_1[y[j]],ylabel[j],0,tphi_1);
g.Add(*tphi_1);
if(j > 0)
{
_data->TensorPhi2(X[i].phi_2[y[j-1]][y[j]-y[j-1]-1], ylabel[j-1], ylabel[j], 0,0,tphi_2);
g.Add(*tphi_2);
}
}
if(y.size() > 0)
{
//g.Add(*(X[i].phi_2[y[y.size()-1]][X[i].len-1 - y[y.size()-1]-1]));////
_data->TensorPhi2(X[i].phi_2[y[y.size()-1]][X[i].len - y[y.size()-1]-1 ], ylabel[y.size()-1], 0,0,0,tphi_2);
g.Add(*tphi_2);
}
// for predicted y'
//.........这里部分代码省略.........