本文整理汇总了C++中TableTuple::isDirty方法的典型用法代码示例。如果您正苦于以下问题:C++ TableTuple::isDirty方法的具体用法?C++ TableTuple::isDirty怎么用?C++ TableTuple::isDirty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TableTuple
的用法示例。
在下文中一共展示了TableTuple::isDirty方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: notifyTupleDelete
bool CopyOnWriteContext::notifyTupleDelete(TableTuple &tuple) {
assert(m_iterator != NULL);
if (tuple.isDirty() || m_finishedTableScan) {
return true;
}
/**
* Find out which block the address is contained in. Lower bound returns the first entry
* in the index >= the address. Unless the address happens to be equal then the block
* we are looking for is probably the previous entry. Then check if the address fits
* in the previous entry. If it doesn't then the block is something new.
*/
TBPtr block = PersistentTable::findBlock(tuple.address(), m_blocks, getTable().getTableAllocationSize());
if (block.get() == NULL) {
// tuple not in snapshot region, don't care about this tuple
return true;
}
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
return !iter->needToDirtyTuple(block->address(), tuple.address());
}
示例2: next
/**
* Iterate through the table blocks until all the active tuples have been found. Skip dirty tuples
* and mark them as clean so that they can be copied during the next snapshot.
*/
bool CopyOnWriteIterator::next(TableTuple &out) {
assert(m_currentBlock != NULL);
while (true) {
if (m_blockOffset >= m_currentBlock->unusedTupleBoundry()) {
if (m_blockIterator == m_end) {
m_table->snapshotFinishedScanningBlock(m_currentBlock, TBPtr());
break;
}
m_table->snapshotFinishedScanningBlock(m_currentBlock, m_blockIterator.data());
m_location = m_blockIterator.key();
m_currentBlock = m_blockIterator.data();
assert(m_currentBlock->address() == m_location);
m_blockIterator.data() = TBPtr();
m_blockOffset = 0;
m_blockIterator++;
}
assert(m_location < m_currentBlock.get()->address() + m_table->m_tableAllocationSize);
assert(m_location < m_currentBlock.get()->address() + (m_table->m_tupleLength * m_table->m_tuplesPerBlock));
assert (out.sizeInValues() == m_table->columnCount());
m_blockOffset++;
out.move(m_location);
const bool active = out.isActive();
const bool dirty = out.isDirty();
// Return this tuple only when this tuple is not marked as deleted and isn't dirty
if (active && !dirty) {
out.setDirtyFalse();
m_location += m_tupleLength;
return true;
} else {
out.setDirtyFalse();
m_location += m_tupleLength;
}
}
return false;
}
示例3: markTupleDirty
void CopyOnWriteContext::markTupleDirty(TableTuple tuple, bool newTuple) {
assert(m_iterator != NULL);
if (newTuple) {
m_inserts++;
}
else {
m_updates++;
}
/**
* If this an update or a delete of a tuple that is already dirty then no further action is
* required.
*/
if (!newTuple && tuple.isDirty()) {
return;
}
/**
* If the table has been scanned already there is no need to continue marking tuples dirty
* If the tuple is dirty then it has already been backed up.
*/
if (m_finishedTableScan) {
tuple.setDirtyFalse();
return;
}
/**
* Find out which block the address is contained in.
*/
TBPtr block = PersistentTable::findBlock(tuple.address(), m_blocks, getTable().getTableAllocationSize());
if (block.get() == NULL) {
// tuple not in snapshot region, don't care about this tuple, no need to dirty it
tuple.setDirtyFalse();
return;
}
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
if (iter->needToDirtyTuple(block->address(), tuple.address())) {
tuple.setDirtyTrue();
/**
* Don't back up a newly introduced tuple, just mark it as dirty.
*/
if (!newTuple) {
m_backedUpTuples->insertTupleNonVirtualWithDeepCopy(tuple, &m_pool);
}
} else {
tuple.setDirtyFalse();
return;
}
}
示例4: next
/**
* Iterate through the table blocks until all the active tuples have been found. Skip dirty tuples
* and mark them as clean so that they can be copied during the next snapshot.
*/
bool CopyOnWriteIterator::next(TableTuple &out) {
if (m_currentBlock == NULL) {
return false;
}
while (true) {
if (m_blockOffset >= m_currentBlock->unusedTupleBoundary()) {
if (m_blockIterator == m_end) {
m_surgeon->snapshotFinishedScanningBlock(m_currentBlock, TBPtr());
break;
}
m_surgeon->snapshotFinishedScanningBlock(m_currentBlock, m_blockIterator.data());
char *finishedBlock = m_currentBlock->address();
m_location = m_blockIterator.key();
m_currentBlock = m_blockIterator.data();
assert(m_currentBlock->address() == m_location);
m_blockOffset = 0;
// Remove the finished block from the map so that it can be released
// back to the OS if all tuples in the block is deleted.
//
// This invalidates the iterators, so we have to get new iterators
// using the current block's start address. m_blockIterator has to
// point to the next block, hence the upper_bound() call.
m_blocks.erase(finishedBlock);
m_blockIterator = m_blocks.upper_bound(m_currentBlock->address());
m_end = m_blocks.end();
}
assert(m_location < m_currentBlock.get()->address() + m_table->getTableAllocationSize());
assert(m_location < m_currentBlock.get()->address() + (m_table->getTupleLength() * m_table->getTuplesPerBlock()));
assert (out.columnCount() == m_table->columnCount());
m_blockOffset++;
out.move(m_location);
const bool active = out.isActive();
const bool dirty = out.isDirty();
if (dirty) m_skippedDirtyRows++;
if (!active) m_skippedInactiveRows++;
// Return this tuple only when this tuple is not marked as deleted and isn't dirty
if (active && !dirty) {
out.setDirtyFalse();
m_location += m_tupleLength;
return true;
} else {
out.setDirtyFalse();
m_location += m_tupleLength;
}
}
return false;
}
示例5: notifyTupleDelete
bool CopyOnWriteContext::notifyTupleDelete(TableTuple &tuple) {
assert(m_iterator != NULL);
if (tuple.isDirty() || m_finishedTableScan) {
return true;
}
// This is a 'loose' count of the number of deletes because COWIterator could be past this
// point in the block.
m_deletes++;
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
return !iter->needToDirtyTuple(tuple.address());
}
示例6: markTupleDirty
void CopyOnWriteContext::markTupleDirty(TableTuple tuple, bool newTuple) {
assert(m_iterator != NULL);
/**
* If this an update or a delete of a tuple that is already dirty then no further action is
* required.
*/
if (!newTuple && tuple.isDirty()) {
return;
}
/**
* If the table has been scanned already there is no need to continue marking tuples dirty
* If the tuple is dirty then it has already been backed up.
*/
if (m_finishedTableScan) {
tuple.setDirtyFalse();
return;
}
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
if (iter->needToDirtyTuple(tuple.address())) {
tuple.setDirtyTrue();
if (newTuple) {
/**
* Don't back up a newly introduced tuple, just mark it as dirty.
*/
m_inserts++;
}
else {
m_updates++;
m_backedUpTuples->insertTempTupleDeepCopy(tuple, &m_pool);
}
} else {
tuple.setDirtyFalse();
return;
}
}
示例7: canSafelyFreeTuple
bool CopyOnWriteContext::canSafelyFreeTuple(TableTuple tuple) {
assert(m_iterator != NULL);
if (tuple.isDirty() || m_finishedTableScan) {
return true;
}
/**
* Find out which block the address is contained in. Lower bound returns the first entry
* in the index >= the address. Unless the address happens to be equal then the block
* we are looking for is probably the previous entry. Then check if the address fits
* in the previous entry. If it doesn't then the block is something new.
*/
char *address = tuple.address();
TBMapI i = m_blocks.lower_bound(address);
if (i == m_blocks.end() && m_blocks.empty()) {
return true;
}
if (i == m_blocks.end()) {
i--;
if (i.key() + getTable().m_tableAllocationSize < address) {
return true;
}
//OK it is in the very last block
} else {
if (i.key() != address) {
i--;
if (i.key() + getTable().m_tableAllocationSize < address) {
return true;
}
//OK... this is in this particular block
}
}
const char *blockStartAddress = i.key();
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
return !iter->needToDirtyTuple(blockStartAddress, address);
}
示例8: next
/**
* Get the next tuple or return false if none is available.
*/
bool ElasticScanner::next(TableTuple &out)
{
bool found = false;
while (!found && continueScan()) {
assert(m_currentBlockPtr != NULL);
// Sanity checks.
assert(m_tuplePtr < m_currentBlockPtr.get()->address() + m_table.getTableAllocationSize());
assert(m_tuplePtr < m_currentBlockPtr.get()->address() + (m_tupleSize * m_table.getTuplesPerBlock()));
assert (out.sizeInValues() == m_table.columnCount());
// Grab the tuple pointer.
out.move(m_tuplePtr);
// Shift to the next tuple in block.
// continueScan() will check if it's the last one in the block.
m_tupleIndex++;
m_tuplePtr += m_tupleSize;
// The next active/non-dirty tuple is return-worthy.
found = out.isActive() && !out.isDirty();
}
return found;
}
示例9: markTupleDirty
void CopyOnWriteContext::markTupleDirty(TableTuple tuple, bool newTuple) {
if (newTuple) {
m_inserts++;
}
else {
m_updates++;
}
/**
* If this an update or a delete of a tuple that is already dirty then no further action is
* required.
*/
if (!newTuple && tuple.isDirty()) {
return;
}
/**
* If the table has been scanned already there is no need to continue marking tuples dirty
* If the tuple is dirty then it has already been backed up.
*/
if (m_finishedTableScan) {
tuple.setDirtyFalse();
return;
}
/**
* Find out which block the address is contained in.
*/
char *address = tuple.address();
TBMapI i =
m_blocks.lower_bound(address);
if (i == m_blocks.end() && m_blocks.empty()) {
tuple.setDirtyFalse();
return;
}
if (i == m_blocks.end()) {
i--;
if (i.key() + m_table.m_tableAllocationSize < address) {
tuple.setDirtyFalse();
return;
}
//OK it is in the very last block
} else {
if (i.key() != address) {
i--;
if (i.key() + m_table.m_tableAllocationSize < address) {
tuple.setDirtyFalse();
return;
}
//OK... this is in this particular block
}
}
const char *blockStartAddress = i.key();
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
if (iter->needToDirtyTuple(blockStartAddress, address)) {
tuple.setDirtyTrue();
/**
* Don't back up a newly introduced tuple, just mark it as dirty.
*/
if (!newTuple) {
m_backedUpTuples->insertTupleNonVirtualWithDeepCopy(tuple, &m_pool);
}
} else {
tuple.setDirtyFalse();
return;
}
}
示例10: markTupleDirty
void CopyOnWriteContext::markTupleDirty(TableTuple tuple, bool newTuple) {
/**
* If this an update or a delete of a tuple that is already dirty then no further action is
* required.
*/
if (!newTuple && tuple.isDirty()) {
return;
}
/**
* If the table has been scanned already there is no need to continue marking tuples dirty
* If the tuple is dirty then it has already been backed up.
*/
if (m_finishedTableScan) {
tuple.setDirtyFalse();
return;
}
/**
* Find out which block the address is contained in.
*/
char *address = tuple.address();
#ifdef MEMCHECK
BlockPair compP;
compP.pair = std::pair<char*, int>(address, 0);
compP.tupleLength = tuple.tupleLength();
#else
const BlockPair compP(address, 0);
#endif
BlockPairVectorI i =
std::lower_bound(m_blocks.begin(), m_blocks.end(), compP, pairAddressToPairAddressComparator);
if (i == m_blocks.end()) {
tuple.setDirtyFalse();
return;
}
#ifdef MEMCHECK
const char *blockStartAddress = (*i).pair.first;
const int blockIndex = (*i).pair.second;
const char *blockEndAddress = blockStartAddress + tuple.tupleLength();
#else
const char *blockStartAddress = (*i).first;
const int blockIndex = (*i).second;
const char *blockEndAddress = blockStartAddress + TABLE_BLOCKSIZE;
#endif
if (address >= blockEndAddress || address < blockStartAddress) {
/**
* Tuple is in a block allocated after the start of COW
*/
tuple.setDirtyFalse();
return;
}
/**
* Now check where this is relative to the COWIterator.
*/
CopyOnWriteIterator *iter = reinterpret_cast<CopyOnWriteIterator*>(m_iterator.get());
if (iter->needToDirtyTuple(blockIndex, address, newTuple)) {
tuple.setDirtyTrue();
/**
* Don't back up a newly introduced tuple, just mark it as dirty.
*/
if (!newTuple) {
m_backedUpTuples->insertTupleNonVirtualWithDeepCopy(tuple, &m_pool);
}
} else {
tuple.setDirtyFalse();
return;
}
}