当前位置: 首页>>代码示例>>C++>>正文


C++ TableTuple::debug方法代码示例

本文整理汇总了C++中TableTuple::debug方法的典型用法代码示例。如果您正苦于以下问题:C++ TableTuple::debug方法的具体用法?C++ TableTuple::debug怎么用?C++ TableTuple::debug使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TableTuple的用法示例。


在下文中一共展示了TableTuple::debug方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: p_execute

bool IndexScanExecutor::p_execute(const NValueArray &params)
{
    assert(m_node);
    assert(m_node == dynamic_cast<IndexScanPlanNode*>(m_abstractNode));
    assert(m_outputTable);
    assert(m_outputTable == static_cast<TempTable*>(m_node->getOutputTable()));

    // update local target table with its most recent reference
    Table* targetTable = m_node->getTargetTable();
    TableIndex *tableIndex = targetTable->index(m_node->getTargetIndexName());
    TableTuple searchKey(tableIndex->getKeySchema());
    searchKey.moveNoHeader(m_searchKeyBackingStore);

    assert(m_lookupType != INDEX_LOOKUP_TYPE_EQ ||
            searchKey.getSchema()->columnCount() == m_numOfSearchkeys);

    int activeNumOfSearchKeys = m_numOfSearchkeys;
    IndexLookupType localLookupType = m_lookupType;
    SortDirectionType localSortDirection = m_sortDirection;

    // INLINE PROJECTION
    // Set params to expression tree via substitute()
    assert(m_numOfColumns == m_outputTable->columnCount());
    if (m_projectionNode != NULL && m_projectionAllTupleArray == NULL)
    {
        for (int ctr = 0; ctr < m_numOfColumns; ctr++)
        {
            assert(m_projectionNode->getOutputColumnExpressions()[ctr]);
            m_projectionExpressions[ctr]->substitute(params);
            assert(m_projectionExpressions[ctr]);
        }
    }

    //
    // INLINE LIMIT
    //
    LimitPlanNode* limit_node = dynamic_cast<LimitPlanNode*>(m_abstractNode->getInlinePlanNode(PLAN_NODE_TYPE_LIMIT));

    //
    // SEARCH KEY
    //
    searchKey.setAllNulls();
    VOLT_TRACE("Initial (all null) search key: '%s'", searchKey.debugNoHeader().c_str());
    for (int ctr = 0; ctr < activeNumOfSearchKeys; ctr++) {
        m_searchKeyArray[ctr]->substitute(params);
        NValue candidateValue = m_searchKeyArray[ctr]->eval(NULL, NULL);
        try {
            searchKey.setNValue(ctr, candidateValue);
        }
        catch (const SQLException &e) {
            // This next bit of logic handles underflow and overflow while
            // setting up the search keys.
            // e.g. TINYINT > 200 or INT <= 6000000000

            // re-throw if not an overflow or underflow
            // currently, it's expected to always be an overflow or underflow
            if ((e.getInternalFlags() & (SQLException::TYPE_OVERFLOW | SQLException::TYPE_UNDERFLOW)) == 0) {
                throw e;
            }

            // handle the case where this is a comparison, rather than equality match
            // comparison is the only place where the executor might return matching tuples
            // e.g. TINYINT < 1000 should return all values
            if ((localLookupType != INDEX_LOOKUP_TYPE_EQ) &&
                (ctr == (activeNumOfSearchKeys - 1))) {

                if (e.getInternalFlags() & SQLException::TYPE_OVERFLOW) {
                    if ((localLookupType == INDEX_LOOKUP_TYPE_GT) ||
                        (localLookupType == INDEX_LOOKUP_TYPE_GTE)) {

                        // gt or gte when key overflows returns nothing
                        return true;
                    }
                    else {
                        // for overflow on reverse scan, we need to
                        // do a forward scan to find the correct start
                        // point, which is exactly what LTE would do.
                        // so, set the lookupType to LTE and the missing
                        // searchkey will be handled by extra post filters
                        localLookupType = INDEX_LOOKUP_TYPE_LTE;
                    }
                }
                if (e.getInternalFlags() & SQLException::TYPE_UNDERFLOW) {
                    if ((localLookupType == INDEX_LOOKUP_TYPE_LT) ||
                        (localLookupType == INDEX_LOOKUP_TYPE_LTE)) {

                        // lt or lte when key underflows returns nothing
                        return true;
                    }
                    else {
                        // don't allow GTE because it breaks null handling
                        localLookupType = INDEX_LOOKUP_TYPE_GT;
                    }
                }

                // if here, means all tuples with the previous searchkey
                // columns need to be scaned. Note, if only one column,
                // then all tuples will be scanned
                activeNumOfSearchKeys--;
                if (localSortDirection == SORT_DIRECTION_TYPE_INVALID) {
//.........这里部分代码省略.........
开发者ID:liyongcun,项目名称:voltdb,代码行数:101,代码来源:indexscanexecutor.cpp

示例2: p_execute

bool IndexScanExecutor::p_execute(const NValueArray &params)
{
    assert(m_node);
    assert(m_node == dynamic_cast<IndexScanPlanNode*>(m_abstractNode));

    // update local target table with its most recent reference
    Table* targetTable = m_node->getTargetTable();
    TableIndex *tableIndex = targetTable->index(m_node->getTargetIndexName());
    IndexCursor indexCursor(tableIndex->getTupleSchema());

    TableTuple searchKey(tableIndex->getKeySchema());
    searchKey.moveNoHeader(m_searchKeyBackingStore);

    assert(m_lookupType != INDEX_LOOKUP_TYPE_EQ ||
            searchKey.getSchema()->columnCount() == m_numOfSearchkeys);

    int activeNumOfSearchKeys = m_numOfSearchkeys;
    IndexLookupType localLookupType = m_lookupType;
    SortDirectionType localSortDirection = m_sortDirection;

    //
    // INLINE LIMIT
    //
    LimitPlanNode* limit_node = dynamic_cast<LimitPlanNode*>(m_abstractNode->getInlinePlanNode(PLAN_NODE_TYPE_LIMIT));

    TableTuple temp_tuple;
    ProgressMonitorProxy pmp(m_engine, this);
    if (m_aggExec != NULL) {
        const TupleSchema * inputSchema = tableIndex->getTupleSchema();
        if (m_projectionNode != NULL) {
            inputSchema = m_projectionNode->getOutputTable()->schema();
        }
        temp_tuple = m_aggExec->p_execute_init(params, &pmp, inputSchema, m_outputTable);
    } else {
        temp_tuple = m_outputTable->tempTuple();
    }

    // Short-circuit an empty scan
    if (m_node->isEmptyScan()) {
        VOLT_DEBUG ("Empty Index Scan :\n %s", m_outputTable->debug().c_str());
        if (m_aggExec != NULL) {
            m_aggExec->p_execute_finish();
        }
        return true;
    }

    //
    // SEARCH KEY
    //
    bool earlyReturnForSearchKeyOutOfRange = false;

    searchKey.setAllNulls();
    VOLT_TRACE("Initial (all null) search key: '%s'", searchKey.debugNoHeader().c_str());

    for (int ctr = 0; ctr < activeNumOfSearchKeys; ctr++) {
        NValue candidateValue = m_searchKeyArray[ctr]->eval(NULL, NULL);
        if (candidateValue.isNull()) {
            // when any part of the search key is NULL, the result is false when it compares to anything.
            // do early return optimization, our index comparator may not handle null comparison correctly.
            earlyReturnForSearchKeyOutOfRange = true;
            break;
        }

        try {
            searchKey.setNValue(ctr, candidateValue);
        }
        catch (const SQLException &e) {
            // This next bit of logic handles underflow, overflow and search key length
            // exceeding variable length column size (variable lenght mismatch) when
            // setting up the search keys.
            // e.g. TINYINT > 200 or INT <= 6000000000
            // VarChar(3 bytes) < "abcd" or VarChar(3) > "abbd"

            // re-throw if not an overflow, underflow or variable length mismatch
            // currently, it's expected to always be an overflow or underflow
            if ((e.getInternalFlags() & (SQLException::TYPE_OVERFLOW | SQLException::TYPE_UNDERFLOW | SQLException::TYPE_VAR_LENGTH_MISMATCH)) == 0) {
                throw e;
            }

            // handle the case where this is a comparison, rather than equality match
            // comparison is the only place where the executor might return matching tuples
            // e.g. TINYINT < 1000 should return all values
            if ((localLookupType != INDEX_LOOKUP_TYPE_EQ) &&
                    (ctr == (activeNumOfSearchKeys - 1))) {

                if (e.getInternalFlags() & SQLException::TYPE_OVERFLOW) {
                    if ((localLookupType == INDEX_LOOKUP_TYPE_GT) ||
                            (localLookupType == INDEX_LOOKUP_TYPE_GTE)) {

                        // gt or gte when key overflows returns nothing except inline agg
                        earlyReturnForSearchKeyOutOfRange = true;
                        break;
                    }
                    else {
                        // for overflow on reverse scan, we need to
                        // do a forward scan to find the correct start
                        // point, which is exactly what LTE would do.
                        // so, set the lookupType to LTE and the missing
                        // searchkey will be handled by extra post filters
                        localLookupType = INDEX_LOOKUP_TYPE_LTE;
//.........这里部分代码省略.........
开发者ID:dinuschen,项目名称:voltdb,代码行数:101,代码来源:indexscanexecutor.cpp

示例3: p_execute

bool InsertExecutor::p_execute(const NValueArray &params) {
    assert(m_node == dynamic_cast<InsertPlanNode*>(m_abstractNode));
    assert(m_node);
    assert(m_inputTable == dynamic_cast<TempTable*>(m_node->getInputTable()));
    assert(m_inputTable);

    // Target table can be StreamedTable or PersistentTable and must not be NULL
    // Update target table reference from table delegate
    Table* targetTable = m_node->getTargetTable();
    assert(targetTable);
    assert((targetTable == dynamic_cast<PersistentTable*>(targetTable)) ||
            (targetTable == dynamic_cast<StreamedTable*>(targetTable)));

    PersistentTable* persistentTable = m_isStreamed ?
        NULL : static_cast<PersistentTable*>(targetTable);
    TableTuple upsertTuple = TableTuple(targetTable->schema());

    VOLT_TRACE("INPUT TABLE: %s\n", m_inputTable->debug().c_str());

    // count the number of successful inserts
    int modifiedTuples = 0;

    Table* outputTable = m_node->getOutputTable();
    assert(outputTable);

    TableTuple templateTuple = m_templateTuple.tuple();

    std::vector<int>::iterator it;
    for (it = m_nowFields.begin(); it != m_nowFields.end(); ++it) {
        templateTuple.setNValue(*it, NValue::callConstant<FUNC_CURRENT_TIMESTAMP>());
    }

    VOLT_DEBUG("This is a %s-row insert on partition with id %d",
               m_node->getChildren()[0]->getPlanNodeType() == PLAN_NODE_TYPE_MATERIALIZE ?
               "single" : "multi", m_engine->getPartitionId());
    VOLT_DEBUG("Offset of partition column is %d", m_partitionColumn);

    //
    // An insert is quite simple really. We just loop through our m_inputTable
    // and insert any tuple that we find into our targetTable. It doesn't get any easier than that!
    //
    TableTuple inputTuple(m_inputTable->schema());
    assert (inputTuple.sizeInValues() == m_inputTable->columnCount());
    TableIterator iterator = m_inputTable->iterator();
    while (iterator.next(inputTuple)) {

        for (int i = 0; i < m_node->getFieldMap().size(); ++i) {
            // Most executors will just call setNValue instead of
            // setNValueAllocateForObjectCopies.
            //
            // However, We need to call
            // setNValueAlocateForObjectCopies here.  Sometimes the
            // input table's schema has an inlined string field, and
            // it's being assigned to the target table's outlined
            // string field.  In this case we need to tell the NValue
            // where to allocate the string data.
            templateTuple.setNValueAllocateForObjectCopies(m_node->getFieldMap()[i],
                                                           inputTuple.getNValue(i),
                                                           ExecutorContext::getTempStringPool());
        }

        VOLT_TRACE("Inserting tuple '%s' into target table '%s' with table schema: %s",
                   templateTuple.debug(targetTable->name()).c_str(), targetTable->name().c_str(),
                   targetTable->schema()->debug().c_str());

        // if there is a partition column for the target table
        if (m_partitionColumn != -1) {

            // get the value for the partition column
            NValue value = templateTuple.getNValue(m_partitionColumn);
            bool isLocal = m_engine->isLocalSite(value);

            // if it doesn't map to this site
            if (!isLocal) {
                if (!m_multiPartition) {
                    throw ConstraintFailureException(
                            dynamic_cast<PersistentTable*>(targetTable),
                            templateTuple,
                            "Mispartitioned tuple in single-partition insert statement.");
                }

                // don't insert
                continue;
            }
        }

        // for multi partition export tables, only insert into one
        // place (the partition with hash(0)), if the data is from a
        // replicated source.  If the data is coming from a subquery
        // with partitioned tables, we need to perform the insert on
        // every partition.
        if (m_isStreamed && m_multiPartition && !m_sourceIsPartitioned) {
            bool isLocal = m_engine->isLocalSite(ValueFactory::getBigIntValue(0));
            if (!isLocal) continue;
        }


        if (! m_isUpsert) {
            // try to put the tuple into the target table

//.........这里部分代码省略.........
开发者ID:DarkDare,项目名称:voltdb,代码行数:101,代码来源:insertexecutor.cpp


注:本文中的TableTuple::debug方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。