本文整理汇总了C++中TMatrixD::Print方法的典型用法代码示例。如果您正苦于以下问题:C++ TMatrixD::Print方法的具体用法?C++ TMatrixD::Print怎么用?C++ TMatrixD::Print使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TMatrixD
的用法示例。
在下文中一共展示了TMatrixD::Print方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computePropagationJacobianFromLocalStateToNextLocalState
TMatrix EUTelState::computePropagationJacobianFromLocalStateToNextLocalState(TVector3 positionEnd, TVector3 momentumEnd, float arcLength,float nextPlaneID) {
streamlog_out(DEBUG2) << "-------------------------------EUTelState::computePropagationJacobianFromStateToThisZLocation()-------------------------BEGIN" << std::endl;
if(arcLength == 0 or arcLength < 0 ){
throw(lcio::Exception( Utility::outputColourString("The arc length is less than or equal to zero. ","RED")));
}
TMatrixD curvilinearJacobian = geo::gGeometry().getPropagationJacobianCurvilinear(arcLength,getOmega(), computeCartesianMomentum().Unit(),momentumEnd.Unit());
streamlog_out(DEBUG0)<<"This is the curvilinear jacobian at sensor:" << std::endl;
streamlog_message( DEBUG0, curvilinearJacobian.Print();, std::endl; );
示例2: dumpElements
//==========================================================================
//
// Dump element content of TMatrixD and TVectorD
//
//==========================================================================
void dumpElements(TMatrixD& a)
{
cout << endl << endl;
const int nrows = a.GetNrows();
const int ncols = a.GetNcols();
if(nrows==ncols)
cout << "determinent = " << a.Determinant() << endl;
a.Print();
cout << endl << endl;
return;
}
示例3: example
void example() {
ROOT::R::TRInterface &r = ROOT::R::TRInterface::Instance();
// print R version
r.Execute("print(version$version.string)");
// compute standard deviation of 1000 vector normal numbers
double std_dev_r = r.Eval("sd(rnorm(10000))");
std::vector<double> v = r.Eval("rnorm(10000)");
double std_dev_root = TMath::StdDev(v.begin(),v.end());
std::cout << "standard deviation from R = " << std_dev_r << std::endl;
std::cout << "standard deviation from ROOT = " << std_dev_root << std::endl;
if (!TMath::AreEqualAbs(std_dev_r,std_dev_root,0.1))
Error("ROOT-R-Example","Different std-dev found");
// use << to execute the R command instead of Execute
r << "mat<-matrix(c(1,2,3,4,5,6),2,3,byrow=TRUE)";
TMatrixD m = r["mat"];
std::array<double,6> a = r.Eval("seq(1:6)");
TMatrixD m2(2,3,a.data());
if (!(m==m2)) {
Error("ROOT-R-Example","Different matrix found");
m.Print();
m2.Print();
}
// example on how to pass ROOT objects to R
std::vector<double> v_root{1,2,3,4,5,6,7,8};
r["v"] = v_root;
r << "v2<-seq(1:8)";
bool isEqual = r.Eval("prod(v==v2)");
if (!isEqual) {
Error("ROOT-R-Example","Different vector created");
r << "print(v)";
r << "print(v2)";
}
// example on how to pass functions to R
r["gaus_pdf"] = ROOT::Math::normal_pdf;
r << "y<-gaus_pdf(0,1,1)";
double value_r = r["y"];
double value_root = ROOT::Math::normal_pdf(0,1,1);
std::cout << "Function gaussian(0,1,1) evaluated in R = " << value_r << std::endl;
std::cout << "Function gaussian(0,1,1) evaluated in ROOT = " << value_root << std::endl;
if (value_r != value_root)
Error("ROOT-R-Example","Different function value forund in r = %f and ROOT = %f", value_r, value_root);
}
示例4: FitPlotAndSave
//***############## main fitting Fxn ################ *****//
void FitPlotAndSave( char *Ifile ){
/** Plot Options***/
//gROOT->Reset();
// gROOT->Clear();
gROOT->SetStyle("Plain") ;
gROOT->SetBatch(kFALSE);
gStyle->SetOptTitle(1);
gStyle->SetOptStat(0);
gStyle->SetOptFit(1);
gStyle->SetStatX(.89);
gStyle->SetStatY(.89) ;
gStyle->SetStatBorderSize(0);
//gStyle->SetOptStat(1111111)
gStyle->SetCanvasColor(kWhite); // background is no longer mouse-dropping white
gStyle->SetPalette(1); // blue to red false color palette. Use 9 for b/w
gStyle->SetCanvasBorderMode(0); // turn off canvas borders
gStyle->SetPadBorderMode(0);
gStyle->SetPaintTextFormat("5.2f"); // What precision to put numbers if plotted with "TEXT"
// For publishing:
gStyle->SetLineWidth(2);
gStyle->SetTextSize(1.1);
gStyle->SetLabelSize(0.06,"xy");
gStyle->SetTitleSize(0.08,"xy");
gStyle->SetTitleOffset(1.2,"x");
gStyle->SetTitleOffset(1.0,"y");
gStyle->SetPadTopMargin(0.1);
gStyle->SetPadRightMargin(0.1);
gStyle->SetPadBottomMargin(0.16);
gStyle->SetPadLeftMargin(0.12);
TGaxis::SetMaxDigits(1); // Set Axis to be of the form 0.11 10^N
TFile *ifile = new TFile(Ifile);
TF1 *fitFcn = new TF1("fitFcn", mygaus, FitLowRange, FitHighRange, 3 );
fitFcn->SetNpx(500);
fitFcn->SetLineWidth(4);
fitFcn->SetLineStyle(5);
fitFcn->SetLineColor(kBlue);
cout <<" Calling Fitting Fxntion" << endl;
TH1F*h_Seed_TimeEBEB = (TH1F*)ifile->Get("EBEB/seed time");
if(h_Seed_TimeEBEB == 0){ std::cout <<"!! Histogram Does not exist!!" << std::endl; throw 1;}
h_Seed_TimeEBEB->SetTitle("Seed Time[ns]");
h_Seed_TimeEBEB->SetMarkerStyle(20);
h_Seed_TimeEBEB->SetMarkerSize(0.8);
h_Seed_TimeEBEB->SetStats(1);
h_Seed_TimeEBEB->SetTitleSize(0.08, "x");
h_Seed_TimeEBEB->SetTitleOffset(1.0, "x");
h_Seed_TimeEBEB->SetTitleSize(0.06, "y");
h_Seed_TimeEBEB->SetTitleOffset(0.95, "y");
h_Seed_TimeEBEB->SetYTitle("Number of Seeds/0.05ns");
h_Seed_TimeEBEB->SetXTitle("t_{seed}[ns]");
h_Seed_TimeEBEB->GetXaxis()->SetRangeUser(FitLowRange, FitHighRange);
/** Set parms as parms of Fit Fxn **/
fitFcn->SetParameters(500, h_Seed_TimeEBEB->GetMean(), h_Seed_TimeEBEB->GetRMS() );
fitFcn->SetParNames("CONST", "#mu(ns)", "#sigma(ns)");
h_Seed_TimeEBEB->Fit("fitFcn", "LL"); /**Fit with improved LL**/
std::cout << "Printing Fit Parameters for EBEB ...... " << std::endl;
printf("Integral of function in EBEB = %g\n", fitFcn->Integral( FitLowRange, FitHighRange));
//*** retrive fit results***//
int npar = fitFcn->GetNpar();
TVirtualFitter *fit = TVirtualFitter::GetFitter();
fit->PrintResults(2,0.);
TMatrixD *CovMatrix = new TMatrixD ( npar, npar, fit->GetCovarianceMatrix() );
CovMatrix->Print();
TCanvas *c1 = new TCanvas("c1","EB-EB",200,10,800,900);
c1->SetGridx();
c1->SetGridy();
c1->GetFrame()->SetFillColor(21);
c1->GetFrame()->SetBorderMode(-1);
c1->GetFrame()->SetBorderSize(5);
/* c1->Divide(2,1); */
c1->cd();
h_Seed_TimeEBEB->Draw();
fitFcn->Draw("sames");
c1->SetLogy(0);
// draw the legend
TLegend *leg = new TLegend(0.15,0.72,0.3,0.85);
leg->SetTextFont(72);
leg->SetTextSize(0.04);
leg->AddEntry(h_Seed_TimeEBEB,"EB","lpe");
leg->AddEntry(fitFcn,"GAUS","l");
leg->Draw();
c1->SaveAs("Seed_Time_DoubleElectron_Run2012A-EB-EB.png");
}
示例5: comparison_cov_firstpar
//.........这里部分代码省略.........
CovPion[0][0] = cov[0];
CovPion[0][1] = cov[1];
CovPion[0][2] = cov[2];
CovPion[0][3] = cov[3];
CovPion[0][4] = cov[4];
CovPion[1][1] = cov[5];
CovPion[1][2] = cov[6];
CovPion[1][3] = cov[7];
CovPion[1][4] = cov[8];
CovPion[2][2] = cov[9];
CovPion[2][3] = cov[10];
CovPion[2][4] = cov[11];
CovPion[3][3] = cov[12];
CovPion[3][4] = cov[13];
CovPion[4][4] = cov[14];
for (int i=0; i<5; i++){
for(int j=0; j<5; j++){
CovPion[j][i]=CovPion[i][j];
}
}
cout << "Covariance matrix for pion: " << endl;
for(int i=0; i<7; i++){
for(int j=0; j<7; j++){
if(TMath::Abs(piCov[i][j])<1e-6) piCov[i][j]=0;
}
}
piCov.Print();
cout << "First Par Covariance matrix for pion: " << endl;
CovPion.Print();
}
//Get proton
for (int j=0; j<proton.GetLength(); ++j){
bool truth = theAnalysis->McTruthMatch(proton[j]);
if(truth){
TMatrixD protCov = proton[j]->Cov7();
FairTrackParP paramFirst = theAnalysis->GetFirstPar(proton[j]);
double cov[15];
paramFirst.GetCov(cov);
for (int i=0; i<15; i++){
if(TMath::Abs(cov[i]<1e-6)) cov[i]=0;
}
CovProton[0][0] = cov[0];
CovProton[0][1] = cov[1];
CovProton[0][2] = cov[2];
CovProton[0][3] = cov[3];
CovProton[0][4] = cov[4];
CovProton[1][1] = cov[5];
CovProton[1][2] = cov[6];
示例6: ratioPlots_Zxx
//.........这里部分代码省略.........
c1->cd();
TPad *pad2 = new TPad("pad2","pad2",0,0,1,0.5);
pad2->SetTopMargin(0);
pad2->SetBottomMargin(0.4);
pad2->Draw();
pad2->cd();
pad2->SetGrid();
h2->SetStats(0);
h2->Divide(h1);
//h2->SetMarkerStyle(21);
h2->Draw("ep");
h2->GetYaxis()->SetLabelSize(0.1);
h2->GetYaxis()->SetRangeUser(-0.5, 2.5);// ,yTopLimit);
h2->GetYaxis()->SetTitle("[email protected]+PY8 / MG5+PY6");
h2->GetYaxis()->SetTitleSize(0.06);
h2->GetYaxis()->SetTitleOffset(0.7);
h2->GetXaxis()->SetLabelSize(0.1);
h2->GetXaxis()->SetTitle(x_title);
h2->GetXaxis()->SetTitleSize(0.16);
h2->GetXaxis()->SetTitleOffset(0.9);
// Double_t matrix[4][4];
h2->Fit("pol3","","",50.0,1200.0);
TF1 *ratio = h2->GetFunction("pol3");
TVirtualFitter *fitter = TVirtualFitter::GetFitter();
TMatrixD matrix(4,4,fitter->GetCovarianceMatrix());
Double_t errorPar00 = fitter->GetCovarianceMatrixElement(0,0);
Double_t errorPar11 = fitter->GetCovarianceMatrixElement(1,1);
Double_t errorPar22 = fitter->GetCovarianceMatrixElement(2,2);
Double_t errorPar33 = fitter->GetCovarianceMatrixElement(3,3);
// c1->cd();
matrix.Print();
//const TMatrixDSym m = matrix;
const TMatrixDEigen eigen(matrix);
const TMatrixD eigenVal = eigen.GetEigenValues();
const TMatrixD V = eigen.GetEigenVectors();
cout << "V" << endl;
V.Print();
cout << "eigenVal" << endl;
eigenVal.Print();
cout << "Recomputed diag" << endl;
//const TMatrixD Vt(TMatrixD::kTransposed,V);
//const TMatrixD Vinv = V.Invert();
const TMatrixD Vt(TMatrixD::kTransposed,V);
//cout << "V-1" << endl;
//Vinv.Print();
cout << "Vt" << endl;
Vt.Print();
const TMatrixD VAVt = Vt*matrix*V;
VAVt.Print();
const TVectorD FittedParam(4);
FittedParam(0) = fitter->GetParameter(0);
示例7: FITS_tutorial1
// Open a FITS file and retrieve the first plane of the image array
// as a TASImage object
void FITS_tutorial1()
{
printf("\n\n--------------------------------\n");
printf("WELCOME TO FITS tutorial #1 !!!!\n");
printf("--------------------------------\n");
printf("We're gonna open a FITS file that contains only the\n");
printf("primary HDU, consisting on an image.\n");
printf("The object you will see is a snapshot of the NGC7662 nebula,\n");
printf("which was taken by the author on November 2009 in Barcelona (CATALONIA).\n\n");
if (!gROOT->IsBatch()) {
//printf("Press ENTER to start..."); getchar();
}
// Open primary HDU from file
TFITSHDU *hdu = new TFITSHDU("sample1.fits");
if (hdu == 0) {
printf("ERROR: could not access the HDU\n"); return;
}
printf("File successfully open!\n");
// Dump the HDUs within the FITS file
// and also their metadata
//printf("Press ENTER to see summary of all data stored in the file:"); getchar();
hdu->Print("F+");
printf("....................................\n");
// Here we get the exposure time.
//printf("Press ENTER to retrieve the exposure time from the HDU metadata..."); getchar();
printf("Exposure time = %s\n", hdu->GetKeywordValue("EXPTIME").Data());
// Read the primary array as a matrix,
// selecting only layer 0.
// This function may be useful to
// do image processing.
printf("....................................\n");
printf("We can read the image as a matrix of values.\n");
printf("This feature is useful to do image processing, e.g:\n");
printf("histogram equalization, custom filtering, ...\n");
//printf("Press ENTER to continue..."); getchar();
TMatrixD *mat = hdu->ReadAsMatrix(0);
mat->Print();
delete mat;
// Read the primary array as an image,
// selecting only layer 0.
printf("....................................\n");
printf("Now the primary array will be read both as an image and as a histogram,\n");
printf("and they will be shown in a canvas.\n");
//printf("Press ENTER to continue..."); getchar();
TASImage *im = hdu->ReadAsImage(0);
// Read the primary array as a histogram.
// Depending on array dimensions, returned
// histogram will be 1D, 2D or 3D
TH1 *hist = hdu->ReadAsHistogram();
TCanvas *c = new TCanvas("c1", "FITS tutorial #1", 800, 300);
c->Divide(2,1);
c->cd(1);
im->Draw();
c->cd(2);
hist->Draw("COL");
// Clean up
delete hdu;
}