本文整理汇总了C++中TMatrixD::GetNcols方法的典型用法代码示例。如果您正苦于以下问题:C++ TMatrixD::GetNcols方法的具体用法?C++ TMatrixD::GetNcols怎么用?C++ TMatrixD::GetNcols使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TMatrixD
的用法示例。
在下文中一共展示了TMatrixD::GetNcols方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: lv_with_mass
TLorentzVector leptonic_fitter_algebraic::lv_with_mass( const TMatrixD& mat, double mass )
{
assert( mat.GetNcols() == 1 || mat.GetNrows() == 1 );
TLorentzVector lv;
const double *array = mat.GetMatrixArray();
lv.SetXYZM( array[0], array[1], array[2], mass );
return lv;
}
示例2: addInQuadrature
int addInQuadrature(const TMatrixD &sf, const TMatrixD &sfErr, const TMatrixD &sfSystRelErr, TMatrixD &totErr) {
for (int ir=0; ir<sf.GetNrows(); ++ir) {
for (int ic=0; ic<sf.GetNcols(); ++ic) {
double err2=pow(sfErr(ir,ic),2) + pow(sf(ir,ic)*sfSystRelErr(ir,ic),2);
totErr(ir,ic)=sqrt(err2);
}
}
return 1;
}
示例3: calculateInvertedMatrixErrors
void calculateInvertedMatrixErrors(TMatrixD &T, TMatrixD &TErrPos, TMatrixD &TErrNeg,
TMatrixD &TinvErr){
// Calculate errors on the inverted matrix by the Monte Carlo
// method
Double_t det;
int nRow = T.GetNrows();
int nCol = T.GetNcols();
TMatrixD TinvSum(nRow,nCol);
TMatrixD TinvSumSquares(nRow,nCol);
// Reset Matrix where we will be accumulating RMS/sigma:
TinvSum = 0;
TinvSumSquares = 0;
TinvErr = 0;
// Do many tries, accumulate RMS
int N = 100000;
for(int iTry = 0; iTry<N; iTry++){
// Find the smeared matrix
TMatrixD Tsmeared = T;
for(int i = 0; i<nRow; i++){
for(int j = 0; j<nCol; j++){
double central = T(i,j);
double sigPos = TErrPos(i,j);
double sigNeg = TErrNeg(i,j);
// Switch to symmetric errors: approximation, but much simpler
double sig = (sigPos+sigNeg)/2.0;
Tsmeared(i,j) = gRandom->Gaus(central,sig);
}
}
// Find the inverted to smeared matrix
TMatrixD TinvSmeared = Tsmeared;
TinvSmeared.Invert(&det);
// Accumulate sum and sum of squares for each element
for(int i2 = 0; i2<nRow; i2++){
for(int j2 = 0; j2<nCol; j2++){
TinvSum (i2,j2) += TinvSmeared(i2,j2);
TinvSumSquares(i2,j2) += TinvSmeared(i2,j2)*TinvSmeared(i2,j2);
}
}
}
// Calculate the error matrix
TMatrixD TinvAverage = TinvSum;
for(int i = 0; i<nRow; i++){
for(int j = 0; j<nCol; j++){
TinvErr(i,j) = sqrt( TinvSumSquares(i,j)/double(N)
- (TinvSum(i,j)/double(N))*(TinvSum(i,j)/double(N)) );
TinvAverage(i,j) = TinvSum(i,j)/double(N);
}
}
return;
}
示例4: dumpElements
//==========================================================================
//
// Dump element content of TMatrixD and TVectorD
//
//==========================================================================
void dumpElements(TMatrixD& a)
{
cout << endl << endl;
const int nrows = a.GetNrows();
const int ncols = a.GetNcols();
if(nrows==ncols)
cout << "determinent = " << a.Determinant() << endl;
a.Print();
cout << endl << endl;
return;
}
示例5: cofactor
double leptonic_fitter_algebraic::cofactor( const TMatrixD& mat, int i, int j )
{
assert( mat.GetNcols() == 3 && mat.GetNrows() == 3 );
assert( i >= 0 && i < 3 && j >= 0 && j < 3 );
int i0 = ( i ) ? 0 : 1;
int i1 = ( i == 2 ) ? 1 : 2;
int j0 = ( j ) ? 0 : 1;
int j1 = ( j == 2 ) ? 1 : 2;
int sign = ( ( i+j ) % 2 ) ? -1 : 1;
return sign * ( mat[i0][j0] * mat[i1][j1] - mat[i0][j1] * mat[i1][j0] );
}
示例6: real_eigenvalues
void leptonic_fitter_algebraic::real_eigenvalues( const TMatrixD& mat )
{
Int_t ncol = mat.GetNcols();
assert( ncol < 10 && mat.GetNrows() == ncol );
_real_eigs.clear();
TMatrixDEigen eigen( mat );
const TVectorD& e_res = eigen.GetEigenValuesRe();
const TVectorD& e_ims = eigen.GetEigenValuesIm();
for( int ir=0; ir < ncol; ++ir ) {
if( e_ims[ ir ] == 0 ) _real_eigs.push_back( e_res[ ir ] );
}
}
示例7: LoadMatrix
int LoadMatrix(const TString &fname, TMatrixD &M, TMatrixD &Merr, const TString &field, const TString &fieldErr) {
TFile f(fname,"read");
TMatrixD *Mptr=(TMatrixD*)f.Get(field);
TMatrixD *MerrPtr=(TMatrixD*)f.Get(fieldErr);
f.Close();
if (!Mptr || !MerrPtr) {
std::cout << "error in loading from <" << fname << ">\n";
if (!Mptr) std::cout << " failed to load <" << field << ">\n";
if (!MerrPtr) std::cout << " failed to load <" << fieldErr << ">\n";
return 0;
}
if ((Mptr->GetNrows() != M.GetNrows()) ||
(Mptr->GetNcols() != M.GetNcols()) ) {
std::cout << "dim mismatch in <" << fname << ">\n";
return 0;
}
M = *Mptr;
Merr= *MerrPtr;
delete Mptr;
delete MerrPtr;
return 1;
}
示例8: dumpElements
//==========================================================================
//
// Dump element content of TMatrixD and TVectorD
//
//==========================================================================
void dumpElements(TMatrixD& a)
{
cout << endl << endl;
const int nrows = a.GetNrows();
const int ncols = a.GetNcols();
if(nrows==ncols)
cout << "determinent = " << a.Determinant() << endl;
cout << "------------------------------------------------------------------"
<< endl;
for(int i=0; i< nrows; i++)
{
for(int j=0; j< ncols; j++)
cout << a(i,j) << ", \t";
cout << endl;
}
cout << "------------------------------------------------------------------"
<< endl;
cout << endl << endl;
return;
}
示例9: plotDYUnfoldingMatrix
//.........这里部分代码省略.........
} // end loop over dielectrons
} // end loop over events
delete infile;
infile=0, eventTree=0;
} // end loop over files
delete gen;
//finish reweighting of mass spectra
// Find bin by bin corrections and the errors
double tCentral, tErrNeg, tErrPos;
for(int i=0; i<DYTools::nMassBins; i++){
if ( DetCorrFactorDenominator(i) != 0 ){
// This method does not take into account correlation between numerator
// and denominator in calculation of errors. This is a flaw to be corrected
// in the future.
SimpleDivide( DetCorrFactorNumerator(i), DetCorrFactorDenominator(i), tCentral, tErrNeg, tErrPos);
DetCorrFactor(i) = tCentral;
DetCorrFactorErrPos(i) = tErrPos;
DetCorrFactorErrNeg(i) = tErrNeg;
} else {
DetCorrFactor(i) = 0;
DetCorrFactorErrPos(i) = 0;
DetCorrFactorErrNeg(i) = 0;
}
}
// Find response matrix, which is simply the normalized migration matrix
for(int ifsr = 0; ifsr < DetMigration.GetNrows(); ifsr++){
double nEventsInFsrMassBin = 0;
for(int ireco = 0; ireco < DetMigration.GetNcols(); ireco++)
nEventsInFsrMassBin += DetMigration(ifsr,ireco);
// Now normalize each element and find errors
for(int ireco = 0; ireco < DetMigration.GetNcols(); ireco++){
tCentral = 0;
tErrPos = 0;
tErrNeg = 0;
// Note: the event counts supposedly are dominated with events with weight "1"
// coming from the primary MC sample, so the error is assumed Poissonian in
// the call for efficiency-calculating function below.
if( nEventsInFsrMassBin != 0 ){
EfficiencyDivide(DetMigration(ifsr,ireco), nEventsInFsrMassBin, tCentral, tErrNeg, tErrPos);
// BayesEfficiency does not seem to be working in newer ROOT versions,
// so it is replaced by simler method
// BayesEfficiency( DetMigration(ifsr,ireco), nEventsInFsrMassBin, tCentral, tErrNeg, tErrPos);
}
DetResponse (ifsr,ireco) = tCentral;
DetResponseErrPos(ifsr,ireco) = tErrPos;
DetResponseErrNeg(ifsr,ireco) = tErrNeg;
}
}
// Find inverted response matrix
TMatrixD DetInvertedResponse = DetResponse;
Double_t det;
DetInvertedResponse.Invert(&det);
TMatrixD DetInvertedResponseErr(DetInvertedResponse.GetNrows(), DetInvertedResponse.GetNcols());
calculateInvertedMatrixErrors(DetResponse, DetResponseErrPos, DetResponseErrNeg, DetInvertedResponseErr);
// Package bin limits into TVectorD for storing in a file
TVectorD BinLimitsArray(DYTools::nMassBins+1);
for(int i=0; i<DYTools::nMassBins+1; i++)
BinLimitsArray(i) = DYTools::massBinLimits[i];