当前位置: 首页>>代码示例>>C++>>正文


C++ TIntFltH::Len方法代码示例

本文整理汇总了C++中TIntFltH::Len方法的典型用法代码示例。如果您正苦于以下问题:C++ TIntFltH::Len方法的具体用法?C++ TIntFltH::Len怎么用?C++ TIntFltH::Len使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TIntFltH的用法示例。


在下文中一共展示了TIntFltH::Len方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: GetEigenVectorCentr

void GetEigenVectorCentr(const PUNGraph& Graph, TIntFltH& EigenH, const double& Eps, const int& MaxIter) {
  const int NNodes = Graph->GetNodes();
  EigenH.Gen(NNodes);
  for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
    EigenH.AddDat(NI.GetId(), 1.0/NNodes);
    IAssert(NI.GetId() == EigenH.GetKey(EigenH.Len()-1));
  }
  TFltV TmpV(NNodes);
  double diff = TFlt::Mx;
  for (int iter = 0; iter < MaxIter; iter++) {
    int j = 0;
    for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) {
      TmpV[j] = 0;
      for (int e = 0; e < NI.GetOutDeg(); e++) {
        TmpV[j] += EigenH.GetDat(NI.GetOutNId(e)); }
    }
    double sum = 0;
    for (int i = 0; i < TmpV.Len(); i++) {
      EigenH[i] = TmpV[i];
      sum += EigenH[i];
    }
    for (int i = 0; i < EigenH.Len(); i++) {
      EigenH[i] /= sum; }
    if (fabs(diff-sum) < Eps) { break; }
    //printf("\tdiff:%f\tsum:%f\n", fabs(diff-sum), sum);
    diff = sum;
  }
}
开发者ID:Networks-Learning,项目名称:infopath,代码行数:28,代码来源:centr.cpp

示例2: GetWeightedPageRankMP1

int GetWeightedPageRankMP1(const PNEANet Graph, TIntFltH& PRankH, const TStr& Attr, const double& C, const double& Eps, const int& MaxIter) {
  if (!Graph->IsFltAttrE(Attr)) return -1;

  TFltV Weights = Graph->GetFltAttrVecE(Attr);

  int mxid = Graph->GetMxNId();
  TFltV OutWeights(mxid);
  Graph->GetWeightOutEdgesV(OutWeights, Weights);
  /*for (TNEANet::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
    OutWeights[NI.GetId()] = Graph->GetWeightOutEdges(NI, Attr);
  }*/


  /*TIntFltH Weights;
  for (TNEANet::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
    Weights.AddDat(NI.GetId(), Graph->GetWeightOutEdges(NI, Attr));
  }*/

  const int NNodes = Graph->GetNodes();
  TVec<TNEANet::TNodeI> NV;
  //const double OneOver = 1.0/double(NNodes);
  PRankH.Gen(NNodes);
  for (TNEANet::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
    NV.Add(NI);
    PRankH.AddDat(NI.GetId(), 1.0/NNodes);
    //IAssert(NI.GetId() == PRankH.GetKey(PRankH.Len()-1));
  }
  TFltV TmpV(NNodes);
  for (int iter = 0; iter < MaxIter; iter++) {
    #pragma omp parallel for schedule(dynamic,10000)
    for (int j = 0; j < NNodes; j++) {
      TNEANet::TNodeI NI = NV[j];
      TmpV[j] = 0;
      for (int e = 0; e < NI.GetInDeg(); e++) {
        const int InNId = NI.GetInNId(e);
        const TFlt OutWeight = OutWeights[InNId];
        int EId = Graph->GetEId(InNId, NI.GetId());
        const TFlt Weight = Weights[Graph->GetFltKeyIdE(EId)];
        if (OutWeight > 0) {
          TmpV[j] += PRankH.GetDat(InNId) * Weight / OutWeight; }
      }
      TmpV[j] =  C*TmpV[j]; // Berkhin (the correct way of doing it)
      //TmpV[j] =  C*TmpV[j] + (1.0-C)*OneOver; // iGraph
    }
    double diff=0, sum=0, NewVal;
    #pragma omp parallel for reduction(+:sum) schedule(dynamic,10000)
    for (int i = 0; i < TmpV.Len(); i++) { sum += TmpV[i]; }
    const double Leaked = (1.0-sum) / double(NNodes);
    #pragma omp parallel for reduction(+:diff) schedule(dynamic,10000)
    for (int i = 0; i < PRankH.Len(); i++) { // re-instert leaked PageRank
      NewVal = TmpV[i] + Leaked; // Berkhin
      //NewVal = TmpV[i] / sum;  // iGraph
      diff += fabs(NewVal-PRankH[i]);
      PRankH[i] = NewVal;
    }
    if (diff < Eps) { break; }
  }
  return 0;
}
开发者ID:sramas15,项目名称:snapr,代码行数:59,代码来源:centr.cpp

示例3: GetStepSizeByLineSearch

double TAGMFast::GetStepSizeByLineSearch(const int UID, const TIntFltH& DeltaV, const TIntFltH& GradV, const double& Alpha, const double& Beta, const int MaxIter) {
  double StepSize = 1.0;
  double InitLikelihood = LikelihoodForRow(UID);
  TIntFltH NewVarV(DeltaV.Len());
  for(int iter = 0; iter < MaxIter; iter++) {
    for (int i = 0; i < DeltaV.Len(); i++){
      int CID = DeltaV.GetKey(i);
      double NewVal = GetCom(UID, CID) + StepSize * DeltaV.GetDat(CID);
      if (NewVal < MinVal) { NewVal = MinVal; }
      if (NewVal > MaxVal) { NewVal = MaxVal; }
      NewVarV.AddDat(CID, NewVal);
    }
    if (LikelihoodForRow(UID, NewVarV) < InitLikelihood + Alpha * StepSize * DotProduct(GradV, DeltaV)) {
      StepSize *= Beta;
    } else {
      break;
    }
    if (iter == MaxIter - 1) { 
      StepSize = 0.0;
      break;
    }
  }
  return StepSize;
}
开发者ID:alwayskidd,项目名称:snap,代码行数:24,代码来源:agmfast.cpp

示例4: GetEigenVectorCentr

void GetEigenVectorCentr(const PUNGraph& Graph, TIntFltH& NIdEigenH, const double& Eps, const int& MaxIter) {
  const int NNodes = Graph->GetNodes();
  NIdEigenH.Gen(NNodes);
  // initialize vector values
  for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
    NIdEigenH.AddDat(NI.GetId(), 1.0 / NNodes);
    IAssert(NI.GetId() == NIdEigenH.GetKey(NIdEigenH.Len() - 1));
  }
  TFltV TmpV(NNodes);
  for (int iter = 0; iter < MaxIter; iter++) {
    int j = 0;
    // add neighbor values
    for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) {
      TmpV[j] = 0;
      for (int e = 0; e < NI.GetOutDeg(); e++) {
        TmpV[j] += NIdEigenH.GetDat(NI.GetOutNId(e));
      }
    }

    // normalize
    double sum = 0;
    for (int i = 0; i < TmpV.Len(); i++) {
      sum += (TmpV[i] * TmpV[i]);
    }
    sum = sqrt(sum);
    for (int i = 0; i < TmpV.Len(); i++) {
      TmpV[i] /= sum;
    }

    // compute difference
    double diff = 0.0;
    j = 0;
    for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) {
      diff += fabs(NIdEigenH.GetDat(NI.GetId()) - TmpV[j]);
    }

    // set new values
    j = 0;
    for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) {
      NIdEigenH.AddDat(NI.GetId(), TmpV[j]);
    }

    if (diff < Eps) {
      break;
    }
  }
}
开发者ID:Austindeadhead,项目名称:qminer,代码行数:47,代码来源:centr.cpp

示例5: main

int main(int argc, char* argv[]) {
 Env = TEnv(argc, argv, TNotify::StdNotify);
 Env.PrepArgs(TStr::Fmt("Inverse PageRank. Build: %s, %s. Time: %s", __TIME__, __DATE__, TExeTm::GetCurTm()));
 TExeTm ExeTm;
 Try
	const TStr Iput = Env.GetIfArgPrefixStr("-i:", "Input.txt", "Input File" );
	const TStr Oput = Env.GetIfArgPrefixStr("-o:", "Output.txt", "Output File");
	FILE* fpI = fopen(Iput.CStr(), "r");
	FILE* fpO = fopen(Oput.CStr(), "w");
	

	const double C    = 0.85;
	const int MaxIter = 50;
	const double Eps  = 1e-9;

	PNGraph Graph = TSnap::LoadEdgeList< PNGraph > (Iput);
	fprintf(fpO, "\nNodes: %d, Edges: %d\n\n", Graph->GetNodes(), Graph->GetEdges());
	const int NNodes = Graph->GetNodes();
	const double OneOver = (double) 1.0 / (double) NNodes;
	
	TIntFltH PRankH;
	PRankH.Gen(NNodes);
	
	for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++)
    	PRankH.AddDat(NI.GetId(), OneOver);
    
    TFltV TmpV(NNodes);
	for (int iter = 0; iter < MaxIter; iter++) {
    	int j = 0;
    	for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) {
			TmpV[j] = 0;
	        for (int e = 0; e < NI.GetOutDeg(); e++) {
				const int OutNId = NI.GetOutNId(e);
				const int InDeg = Graph->GetNI(OutNId).GetInDeg();
				if (InDeg > 0) 
					TmpV[j] += PRankH.GetDat(OutNId) / InDeg;
			}
			TmpV[j] =  C * TmpV[j]; 
    	}
    	
	for (int i = 0; i < PRankH.Len(); i++)
		PRankH[i] = TmpV[i];
    	/*
    	double diff = 0, sum = 0, NewVal;
		for (int i = 0; i < TmpV.Len(); i++)
			sum += TmpV[i];

		const double Leaked = (double) (1.0 - sum) / (double) NNodes;
		for (int i = 0; i < PRankH.Len(); i++) {
			NewVal = TmpV[i] + Leaked;
			diff += fabs(NewVal - PRankH[i]);
			PRankH[i] = NewVal;
		}
		if (diff < Eps)
			break;
		*/
	}
	
	fprintf(fpO, "Node ID\t\tInverse PageRank\n");
	for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++){
		int Id = NI.GetId();
		double ipr = PRankH.GetDat(Id);
		fprintf(fpO, "%d\t\t\t%.5lf\n", Id, ipr);
	}
 Catch
	printf("\nRun Time: %s (%s)\n", ExeTm.GetTmStr(), TSecTm::GetCurTm().GetTmStr().CStr());
	
	return 0;
}
开发者ID:SITZ,项目名称:OSN-Ranking-Algorithms,代码行数:69,代码来源:ipagerank.cpp

示例6: main

int main(int argc, char* argv[]) {
 Env = TEnv(argc, argv, TNotify::StdNotify);
 Env.PrepArgs(TStr::Fmt("Trust Rank. Build: %s, %s. Time: %s", __TIME__, __DATE__, TExeTm::GetCurTm()));
 TExeTm ExeTm;
 Try
	const TStr Gnod = Env.GetIfArgPrefixStr("-g:", "Gnode.txt", "Good Nodes");
	const TStr Bnod = Env.GetIfArgPrefixStr("-b:", "Bnode.txt", "Bad Nodes" );
	const TStr Iput = Env.GetIfArgPrefixStr("-i:", "Input.txt", "Input File");
	const TStr Oput = Env.GetIfArgPrefixStr("-o:", "Output.txt", "Output File");
	const double C	  = 0.85;
	const int MaxIter = 50;
	const double Eps  = 1e-9;
	
	FILE* fpO = fopen(Oput.CStr(), "w");
	
	PNGraph Graph = TSnap::LoadEdgeList< PNGraph > (Iput);
	fprintf(fpO, "\nNodes: %d, Edges: %d\n\n", Graph->GetNodes(), Graph->GetEdges());
	const int NNodes = Graph->GetNodes();
	TIntFltH TRankH;
	TRankH.Gen(NNodes);
	int maxNId = 0, NId = 0, ret = 0;
	for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++)
		maxNId = max(maxNId, NI.GetId());
	
	TFltV initialTrustScore(maxNId + 1);
	for (int i = 0; i < initialTrustScore.Len(); i++)
		initialTrustScore[i] = 0.5;

	FILE* fpI = fopen(Gnod.CStr(), "r");
	while (true) {
		ret = fscanf(fpI, "%d", &NId);
		if (ret == EOF) break;
		if (Graph->IsNode(NId))
			initialTrustScore[NId] = 1.0;
	}
	fclose(fpI);
	
	fpI = fopen(Bnod.CStr(), "r");
	while (true) {
		ret = fscanf(fpI, "%d", &NId);
		if (ret == EOF) break;
		if (Graph->IsNode(NId))
			initialTrustScore[NId] = 0.0;
	}
	fclose(fpI);

	double Tot = 0.0;
	for(int i = 0; i < initialTrustScore.Len(); i++)
		Tot += initialTrustScore[i];
	for(int i = 0; i < initialTrustScore.Len(); i++)
		initialTrustScore[i] /= Tot;
	
	for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++)
		TRankH.AddDat( NI.GetId(), initialTrustScore[NI.GetId()] );
	
	TFltV TmpV(NNodes);
	for (int iter = 0; iter < MaxIter; iter++) {
		int j = 0;
		for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++, j++) {
			TmpV[j] = 0;
			for (int e = 0; e < NI.GetOutDeg(); e++) {
				const int OutNId = NI.GetOutNId(e);
				const int InDeg  = Graph->GetNI(InNId).GetInDeg();
				if (InDeg > 0) 
					TmpV[j] += (double) TRankH.GetDat(OutNId) / (double) InDeg; 
        	}
			TmpV[j] =  C * TmpV[j] + (1.0 - C) * initialTrustScore[NI.GetId()]; 
		}

		for (int i = 0; i < TRankH.Len(); i++) 
			TRankH[i] = TmpV[i];
	}
	
	fprintf(fpO, "Node ID\t\tTrustRank\n");
	for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++){
		int Id = NI.GetId();
		double tr = TRankH.GetDat(Id);
		fprintf(fpO, "%d\t\t\t%.5lf\n", Id, tr);
	}
	fclose(fpO);
	
 Catch
	printf("\nRun Time: %s (%s)\n", ExeTm.GetTmStr(), TSecTm::GetCurTm().GetTmStr().CStr());
	
	return 0;
}
开发者ID:SITZ,项目名称:OSN-Ranking-Algorithms,代码行数:86,代码来源:itrustrank.cpp

示例7: MLEGradAscentParallel

int TAGMFast::MLEGradAscentParallel(const double& Thres, const int& MaxIter, const int ChunkNum, const int ChunkSize, const TStr PlotNm, const double StepAlpha, const double StepBeta) {
  //parallel
  time_t InitTime = time(NULL);
  uint64 StartTm = TSecTm::GetCurTm().GetAbsSecs();
  TExeTm ExeTm, CheckTm;
  double PrevL = Likelihood(true);
  TIntFltPrV IterLV;
  int PrevIter = 0;
  int iter = 0;
  TIntV NIdxV(F.Len(), 0);
  for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
  TIntV NIDOPTV(F.Len()); //check if a node needs optimization or not 1: does not require optimization
  NIDOPTV.PutAll(0);
  TVec<TIntFltH> NewF(ChunkNum * ChunkSize);
  TIntV NewNIDV(ChunkNum * ChunkSize);
  for (iter = 0; iter < MaxIter; iter++) {
    NIdxV.Clr(false);
    for (int i = 0; i < F.Len(); i++) { 
      if (NIDOPTV[i] == 0) {  NIdxV.Add(i); }
    }
    IAssert (NIdxV.Len() <= F.Len());
    NIdxV.Shuffle(Rnd);
    // compute gradient for chunk of nodes
#pragma omp parallel for schedule(static, 1)
    for (int TIdx = 0; TIdx < ChunkNum; TIdx++) {
      TIntFltH GradV;
      for (int ui = TIdx * ChunkSize; ui < (TIdx + 1) * ChunkSize; ui++) {
        NewNIDV[ui] = -1;
        if (ui > NIdxV.Len()) { continue; }
        int u = NIdxV[ui]; //
        //find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
        TUNGraph::TNodeI UI = G->GetNI(u);
        TIntSet CIDSet(5 * UI.GetDeg());
        TIntFltH CurFU = F[u];
        for (int e = 0; e < UI.GetDeg(); e++) {
          if (HOVIDSV[u].IsKey(UI.GetNbrNId(e))) { continue; }
          TIntFltH& NbhCIDH = F[UI.GetNbrNId(e)];
          for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
            CIDSet.AddKey(CI.GetKey());
          }
        }
        if (CIDSet.Empty()) { 
          CurFU.Clr();
        }
        else {
          for (TIntFltH::TIter CI = CurFU.BegI(); CI < CurFU.EndI(); CI++) { //remove the community membership which U does not share with its neighbors
            if (! CIDSet.IsKey(CI.GetKey())) {
              CurFU.DelIfKey(CI.GetKey());
            }
          }
          GradientForRow(u, GradV, CIDSet);
          if (Norm2(GradV) < 1e-4) { NIDOPTV[u] = 1; continue; }
          double LearnRate = GetStepSizeByLineSearch(u, GradV, GradV, StepAlpha, StepBeta, 5);
          if (LearnRate <= 1e-5) { NewNIDV[ui] = -2; continue; }
          for (int ci = 0; ci < GradV.Len(); ci++) {
            int CID = GradV.GetKey(ci);
            double Change = LearnRate * GradV.GetDat(CID);
            double NewFuc = CurFU.IsKey(CID)? CurFU.GetDat(CID) + Change : Change;
            if (NewFuc <= 0.0) {
              CurFU.DelIfKey(CID);
            } else {
              CurFU.AddDat(CID) = NewFuc;
            }
          }
          CurFU.Defrag();
        }
        //store changes
        NewF[ui] = CurFU;
        NewNIDV[ui] = u;
      }
    }
    int NumNoChangeGrad = 0;
    int NumNoChangeStepSize = 0;
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID == -1) { NumNoChangeGrad++; continue; }
      if (NewNID == -2) { NumNoChangeStepSize++; continue; }
      for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
        SumFV[CI.GetKey()] -= CI.GetDat();
      }
    }
#pragma omp parallel for
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID < 0) { continue; }
      F[NewNID] = NewF[ui];
    }
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID < 0) { continue; }
      for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
        SumFV[CI.GetKey()] += CI.GetDat();
      }
    }
    // update the nodes who are optimal
    for (int ui = 0; ui < NewNIDV.Len(); ui++) {
      int NewNID = NewNIDV[ui];
      if (NewNID < 0) { continue; }
      TUNGraph::TNodeI UI = G->GetNI(NewNID);
      NIDOPTV[NewNID] = 0;
//.........这里部分代码省略.........
开发者ID:alwayskidd,项目名称:snap,代码行数:101,代码来源:agmfast.cpp

示例8: MLEGradAscent

int TAGMFast::MLEGradAscent(const double& Thres, const int& MaxIter, const TStr PlotNm, const double StepAlpha, const double StepBeta) {
  time_t InitTime = time(NULL);
  TExeTm ExeTm, CheckTm;
  int iter = 0, PrevIter = 0;
  TIntFltPrV IterLV;
  TUNGraph::TNodeI UI;
  double PrevL = TFlt::Mn, CurL = 0.0;
  TIntV NIdxV(F.Len(), 0);
  for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
  IAssert(NIdxV.Len() == F.Len());
  TIntFltH GradV;
  while(iter < MaxIter) {
    NIdxV.Shuffle(Rnd);
    for (int ui = 0; ui < F.Len(); ui++, iter++) {
      int u = NIdxV[ui]; //
      //find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
      UI = G->GetNI(u);
      TIntSet CIDSet(5 * UI.GetDeg());
      for (int e = 0; e < UI.GetDeg(); e++) {
        if (HOVIDSV[u].IsKey(UI.GetNbrNId(e))) { continue; }
        TIntFltH& NbhCIDH = F[UI.GetNbrNId(e)];
        for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
          CIDSet.AddKey(CI.GetKey());
        }
      }
      for (TIntFltH::TIter CI = F[u].BegI(); CI < F[u].EndI(); CI++) { //remove the community membership which U does not share with its neighbors
        if (! CIDSet.IsKey(CI.GetKey())) {
          DelCom(u, CI.GetKey());
        }
      }
      if (CIDSet.Empty()) { continue; }
      GradientForRow(u, GradV, CIDSet);
      if (Norm2(GradV) < 1e-4) { continue; }
      double LearnRate = GetStepSizeByLineSearch(u, GradV, GradV, StepAlpha, StepBeta);
      if (LearnRate == 0.0) { continue; }
      for (int ci = 0; ci < GradV.Len(); ci++) {
        int CID = GradV.GetKey(ci);
        double Change = LearnRate * GradV.GetDat(CID);
        double NewFuc = GetCom(u, CID) + Change;
        if (NewFuc <= 0.0) {
          DelCom(u, CID);
        } else {
          AddCom(u, CID, NewFuc);
        }
      }
      if (! PlotNm.Empty() && (iter + 1) % G->GetNodes() == 0) {
        IterLV.Add(TIntFltPr(iter, Likelihood(false)));
      }
    }
    printf("\r%d iterations (%f) [%lu sec]", iter, CurL, time(NULL) - InitTime);
    fflush(stdout);
    if (iter - PrevIter >= 2 * G->GetNodes() && iter > 10000) {
      PrevIter = iter;
      CurL = Likelihood();
      if (PrevL > TFlt::Mn && ! PlotNm.Empty()) {
        printf("\r%d iterations, Likelihood: %f, Diff: %f", iter, CurL,  CurL - PrevL);
      }
      fflush(stdout);
      if (CurL - PrevL <= Thres * fabs(PrevL)) { break; }
      else { PrevL = CurL; }
    }
    
  }
  printf("\n");
  printf("MLE for Lambda completed with %d iterations(%s)\n", iter, ExeTm.GetTmStr());
  if (! PlotNm.Empty()) {
    TGnuPlot::PlotValV(IterLV, PlotNm + ".likelihood_Q");
  }
  return iter;
}
开发者ID:alwayskidd,项目名称:snap,代码行数:70,代码来源:agmfast.cpp

示例9: GradientForRow

void TAGMFast::GradientForRow(const int UID, TIntFltH& GradU, const TIntSet& CIDSet) {
  GradU.Gen(CIDSet.Len());

  TFltV HOSumFV; //adjust for Fv of v hold out
  if (HOVIDSV[UID].Len() > 0) {
    HOSumFV.Gen(SumFV.Len());
    
    for (int e = 0; e < HOVIDSV[UID].Len(); e++) {
      for (int c = 0; c < SumFV.Len(); c++) {
        HOSumFV[c] += GetCom(HOVIDSV[UID][e], c);
      }
    }
  }
    
  TUNGraph::TNodeI NI = G->GetNI(UID);
  int Deg = NI.GetDeg();
  TFltV PredV(Deg), GradV(CIDSet.Len());
  TIntV CIDV(CIDSet.Len());
  if (DoParallel && Deg + CIDSet.Len() > 10) {
#pragma omp parallel for schedule(static, 1)
    for (int e = 0; e < Deg; e++) {
      if (NI.GetNbrNId(e) == UID) { continue; }
      if (HOVIDSV[UID].IsKey(NI.GetNbrNId(e))) { continue; }
      PredV[e] = Prediction(UID, NI.GetNbrNId(e));
    }
  
#pragma omp parallel for schedule(static, 1)
    for (int c = 0; c < CIDSet.Len(); c++) {
      int CID = CIDSet.GetKey(c);
      double Val = 0.0;
      for (int e = 0; e < Deg; e++) {
        int VID = NI.GetNbrNId(e);
        if (VID == UID) { continue; }
        if (HOVIDSV[UID].IsKey(VID)) { continue; }
        Val += PredV[e] * GetCom(VID, CID) / (1.0 - PredV[e]) + NegWgt * GetCom(VID, CID);
      }
      double HOSum = HOVIDSV[UID].Len() > 0?  HOSumFV[CID].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
      Val -= NegWgt * (SumFV[CID] - HOSum - GetCom(UID, CID));
      CIDV[c] = CID;
      GradV[c] = Val;
    }
  } 
  else {
    for (int e = 0; e < Deg; e++) {
      if (NI.GetNbrNId(e) == UID) { continue; }
      if (HOVIDSV[UID].IsKey(NI.GetNbrNId(e))) { continue; }
      PredV[e] = Prediction(UID, NI.GetNbrNId(e));
    }
  
    for (int c = 0; c < CIDSet.Len(); c++) {
      int CID = CIDSet.GetKey(c);
      double Val = 0.0;
      for (int e = 0; e < Deg; e++) {
        int VID = NI.GetNbrNId(e);
        if (VID == UID) { continue; }
        if (HOVIDSV[UID].IsKey(VID)) { continue; }
        Val += PredV[e] * GetCom(VID, CID) / (1.0 - PredV[e]) + NegWgt * GetCom(VID, CID);
      }
      double HOSum = HOVIDSV[UID].Len() > 0?  HOSumFV[CID].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
      Val -= NegWgt * (SumFV[CID] - HOSum - GetCom(UID, CID));
      CIDV[c] = CID;
      GradV[c] = Val;
    }
  }
  //add regularization
  if (RegCoef > 0.0) { //L1
    for (int c = 0; c < GradV.Len(); c++) {
      GradV[c] -= RegCoef; 
    }
  }
  if (RegCoef < 0.0) { //L2
    for (int c = 0; c < GradV.Len(); c++) {
      GradV[c] += 2 * RegCoef * GetCom(UID, CIDV[c]); 
    }
  }


  for (int c = 0; c < GradV.Len(); c++) {
    if (GetCom(UID, CIDV[c]) == 0.0 && GradV[c] < 0.0) { continue; }
    if (fabs(GradV[c]) < 0.0001) { continue; }
    GradU.AddDat(CIDV[c], GradV[c]);
  }
  for (int c = 0; c < GradU.Len(); c++) {
    if (GradU[c] >= 10) { GradU[c] = 10; }
    if (GradU[c] <= -10) { GradU[c] = -10; }
    IAssert(GradU[c] >= -10);
  }
}
开发者ID:alwayskidd,项目名称:snap,代码行数:88,代码来源:agmfast.cpp


注:本文中的TIntFltH::Len方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。