本文整理汇总了C++中TIntFltH::BegI方法的典型用法代码示例。如果您正苦于以下问题:C++ TIntFltH::BegI方法的具体用法?C++ TIntFltH::BegI怎么用?C++ TIntFltH::BegI使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TIntFltH
的用法示例。
在下文中一共展示了TIntFltH::BegI方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: LikelihoodForRow
double TAGMFast::LikelihoodForRow(const int UID, const TIntFltH& FU) {
double L = 0.0;
TFltV HOSumFV; //adjust for Fv of v hold out
if (HOVIDSV[UID].Len() > 0) {
HOSumFV.Gen(SumFV.Len());
for (int e = 0; e < HOVIDSV[UID].Len(); e++) {
for (int c = 0; c < SumFV.Len(); c++) {
HOSumFV[c] += GetCom(HOVIDSV[UID][e], c);
}
}
}
TUNGraph::TNodeI NI = G->GetNI(UID);
if (DoParallel && NI.GetDeg() > 10) {
#pragma omp parallel for schedule(static, 1)
for (int e = 0; e < NI.GetDeg(); e++) {
int v = NI.GetNbrNId(e);
if (v == UID) { continue; }
if (HOVIDSV[UID].IsKey(v)) { continue; }
double LU = log (1.0 - Prediction(FU, F[v])) + NegWgt * DotProduct(FU, F[v]);
#pragma omp atomic
L += LU;
}
for (TIntFltH::TIter HI = FU.BegI(); HI < FU.EndI(); HI++) {
double HOSum = HOVIDSV[UID].Len() > 0? HOSumFV[HI.GetKey()].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
double LU = NegWgt * (SumFV[HI.GetKey()] - HOSum - GetCom(UID, HI.GetKey())) * HI.GetDat();
L -= LU;
}
} else {
for (int e = 0; e < NI.GetDeg(); e++) {
int v = NI.GetNbrNId(e);
if (v == UID) { continue; }
if (HOVIDSV[UID].IsKey(v)) { continue; }
L += log (1.0 - Prediction(FU, F[v])) + NegWgt * DotProduct(FU, F[v]);
}
for (TIntFltH::TIter HI = FU.BegI(); HI < FU.EndI(); HI++) {
double HOSum = HOVIDSV[UID].Len() > 0? HOSumFV[HI.GetKey()].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
L -= NegWgt * (SumFV[HI.GetKey()] - HOSum - GetCom(UID, HI.GetKey())) * HI.GetDat();
}
}
//add regularization
if (RegCoef > 0.0) { //L1
L -= RegCoef * Sum(FU);
}
if (RegCoef < 0.0) { //L2
L += RegCoef * Norm2(FU);
}
return L;
}
示例2: GenCascade
void TNetInfBs::GenCascade(TCascade& C, const int& TModel, const double &window, TIntPrIntH& EdgesUsed, const double& delta,
const double& std_waiting_time, const double& std_beta) {
TIntFltH InfectedNIdH; TIntH InfectedBy;
double GlobalTime; int StartNId;
double alpha, beta;
if (GroundTruth->GetNodes() == 0)
return;
while (C.Len() < 2) {
C.Clr();
InfectedNIdH.Clr();
InfectedBy.Clr();
GlobalTime = 0;
StartNId = GroundTruth->GetRndNId();
InfectedNIdH.AddDat(StartNId) = GlobalTime;
while (true) {
// sort by time & get the oldest node that did not run infection
InfectedNIdH.SortByDat(true);
const int& NId = InfectedNIdH.BegI().GetKey();
GlobalTime = InfectedNIdH.BegI().GetDat();
// all the nodes has run infection
if (GlobalTime >= window)
break;
// add current oldest node to the network and set its time
C.Add(NId, GlobalTime);
// run infection from the current oldest node
const TNGraph::TNodeI NI = GroundTruth->GetNI(NId);
for (int e = 0; e < NI.GetOutDeg(); e++) {
const int DstNId = NI.GetOutNId(e);
beta = Betas.GetDat(TIntPr(NId, DstNId));
// flip biased coin (set by beta)
if (TInt::Rnd.GetUniDev() > beta+std_beta*TFlt::Rnd.GetNrmDev())
continue;
alpha = Alphas.GetDat(TIntPr(NId, DstNId));
// not infecting the parent
if (InfectedBy.IsKey(NId) && InfectedBy.GetDat(NId).Val == DstNId)
continue;
double sigmaT;
switch (TModel) {
case 0:
// exponential with alpha parameter
sigmaT = TInt::Rnd.GetExpDev(alpha);
break;
case 1:
// power-law with alpha parameter
sigmaT = TInt::Rnd.GetPowerDev(alpha);
while (sigmaT < delta) { sigmaT = TInt::Rnd.GetPowerDev(alpha); }
break;
case 2:
// rayleigh with alpha parameter
sigmaT = TInt::Rnd.GetRayleigh(1/sqrt(alpha));
break;
default:
sigmaT = 1;
break;
}
// avoid negative time diffs in case of noise
if (std_waiting_time > 0)
sigmaT = TFlt::GetMx(0.0, sigmaT + std_waiting_time*TFlt::Rnd.GetNrmDev());
double t1 = GlobalTime + sigmaT;
if (InfectedNIdH.IsKey(DstNId)) {
double t2 = InfectedNIdH.GetDat(DstNId);
if (t2 > t1 && t2 != window) {
InfectedNIdH.GetDat(DstNId) = t1;
InfectedBy.GetDat(DstNId) = NId;
}
} else {
InfectedNIdH.AddDat(DstNId) = t1;
InfectedBy.AddDat(DstNId) = NId;
}
}
// we cannot delete key (otherwise, we cannot sort), so we assign a big time (window cut-off)
InfectedNIdH.GetDat(NId) = window;
}
}
C.Sort();
for (TIntH::TIter EI = InfectedBy.BegI(); EI < InfectedBy.EndI(); EI++) {
TIntPr Edge(EI.GetDat().Val, EI.GetKey().Val);
if (!EdgesUsed.IsKey(Edge)) EdgesUsed.AddDat(Edge) = 0;
EdgesUsed.GetDat(Edge) += 1;
//.........这里部分代码省略.........
示例3: MLEGradAscentParallel
int TAGMFast::MLEGradAscentParallel(const double& Thres, const int& MaxIter, const int ChunkNum, const int ChunkSize, const TStr PlotNm, const double StepAlpha, const double StepBeta) {
//parallel
time_t InitTime = time(NULL);
uint64 StartTm = TSecTm::GetCurTm().GetAbsSecs();
TExeTm ExeTm, CheckTm;
double PrevL = Likelihood(true);
TIntFltPrV IterLV;
int PrevIter = 0;
int iter = 0;
TIntV NIdxV(F.Len(), 0);
for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
TIntV NIDOPTV(F.Len()); //check if a node needs optimization or not 1: does not require optimization
NIDOPTV.PutAll(0);
TVec<TIntFltH> NewF(ChunkNum * ChunkSize);
TIntV NewNIDV(ChunkNum * ChunkSize);
for (iter = 0; iter < MaxIter; iter++) {
NIdxV.Clr(false);
for (int i = 0; i < F.Len(); i++) {
if (NIDOPTV[i] == 0) { NIdxV.Add(i); }
}
IAssert (NIdxV.Len() <= F.Len());
NIdxV.Shuffle(Rnd);
// compute gradient for chunk of nodes
#pragma omp parallel for schedule(static, 1)
for (int TIdx = 0; TIdx < ChunkNum; TIdx++) {
TIntFltH GradV;
for (int ui = TIdx * ChunkSize; ui < (TIdx + 1) * ChunkSize; ui++) {
NewNIDV[ui] = -1;
if (ui > NIdxV.Len()) { continue; }
int u = NIdxV[ui]; //
//find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
TUNGraph::TNodeI UI = G->GetNI(u);
TIntSet CIDSet(5 * UI.GetDeg());
TIntFltH CurFU = F[u];
for (int e = 0; e < UI.GetDeg(); e++) {
if (HOVIDSV[u].IsKey(UI.GetNbrNId(e))) { continue; }
TIntFltH& NbhCIDH = F[UI.GetNbrNId(e)];
for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
CIDSet.AddKey(CI.GetKey());
}
}
if (CIDSet.Empty()) {
CurFU.Clr();
}
else {
for (TIntFltH::TIter CI = CurFU.BegI(); CI < CurFU.EndI(); CI++) { //remove the community membership which U does not share with its neighbors
if (! CIDSet.IsKey(CI.GetKey())) {
CurFU.DelIfKey(CI.GetKey());
}
}
GradientForRow(u, GradV, CIDSet);
if (Norm2(GradV) < 1e-4) { NIDOPTV[u] = 1; continue; }
double LearnRate = GetStepSizeByLineSearch(u, GradV, GradV, StepAlpha, StepBeta, 5);
if (LearnRate <= 1e-5) { NewNIDV[ui] = -2; continue; }
for (int ci = 0; ci < GradV.Len(); ci++) {
int CID = GradV.GetKey(ci);
double Change = LearnRate * GradV.GetDat(CID);
double NewFuc = CurFU.IsKey(CID)? CurFU.GetDat(CID) + Change : Change;
if (NewFuc <= 0.0) {
CurFU.DelIfKey(CID);
} else {
CurFU.AddDat(CID) = NewFuc;
}
}
CurFU.Defrag();
}
//store changes
NewF[ui] = CurFU;
NewNIDV[ui] = u;
}
}
int NumNoChangeGrad = 0;
int NumNoChangeStepSize = 0;
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID == -1) { NumNoChangeGrad++; continue; }
if (NewNID == -2) { NumNoChangeStepSize++; continue; }
for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
SumFV[CI.GetKey()] -= CI.GetDat();
}
}
#pragma omp parallel for
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID < 0) { continue; }
F[NewNID] = NewF[ui];
}
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID < 0) { continue; }
for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
SumFV[CI.GetKey()] += CI.GetDat();
}
}
// update the nodes who are optimal
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID < 0) { continue; }
TUNGraph::TNodeI UI = G->GetNI(NewNID);
NIDOPTV[NewNID] = 0;
//.........这里部分代码省略.........
示例4: main
int main(int argc, char* argv[])
{
TEnv Env(argc, argv);
TStr PrefixPath = Env.GetArgs() > 1 ? Env.GetArg(1) : TStr("");
double ts1 = Tick();
TTableContext Context;
TVec<PTable> NodeTblV = TVec<PTable>();
TVec<PTable> EdgeTblV = TVec<PTable>();
Schema NodeSchema = Schema();
Schema EdgeSchema = Schema();
LoadFlickrTables(PrefixPath, Context, NodeTblV, NodeSchema, EdgeTblV, EdgeSchema);
double ts2 = Tick();
int ExpectedSz = 0;
for (TVec<PTable>::TIter it = NodeTblV.BegI(); it < NodeTblV.EndI(); it++) {
PTable Table = *it;
ExpectedSz += Table->GetNumRows();
}
THash<TStr, TInt> Hash(ExpectedSz);
TStrV OriNIdV(ExpectedSz);
MergeNodeTables(NodeTblV, NodeSchema, Hash, OriNIdV);
PTable EdgeTable = MergeEdgeTables(EdgeTblV, EdgeSchema, Hash, Context);
double ts3 = Tick();
TStrV V;
TStrV VE;
VE.Add(EdgeSchema.GetVal(2).GetVal1());
PNEANet Graph = TSnap::ToNetwork<PNEANet>(EdgeTable, EdgeSchema.GetVal(0).GetVal1(), EdgeSchema.GetVal(1).GetVal1(),
V, V, VE, aaLast);
double ts4 = Tick();
//int nExps = 1;
int nExps = 40;
TIntFltH PageRankResults;
for (int i = 0; i < nExps; i++) {
PageRankResults = TIntFltH(ExpectedSz);
#ifdef USE_OPENMP
TSnap::GetWeightedPageRankMP2(Graph, PageRankResults, EdgeSchema.GetVal(2).GetVal1(), 0.849999999999998, 0.0001, 10);
#else
TSnap::GetWeightedPageRank(Graph, PageRankResults, EdgeSchema.GetVal(2).GetVal1(), 0.849999999999998, 0.0001, 10);
#endif
}
double ts5 = Tick();
PSOut ResultOut = TFOut::New(PrefixPath + TStr("page-rank-results.tsv"));
for (TIntFltH::TIter it = PageRankResults.BegI(); it < PageRankResults.EndI(); it++) {
ResultOut->PutStrFmtLn("%s\t%f9", OriNIdV[it.GetKey()].CStr(), it.GetDat().Val);
}
double ts6 = Tick();
bool isPar = false;
#ifdef USE_OPENMP
isPar = true;
#endif
// PSOut FeaturesOut = TFOut::New(PrefixPath + "features.txt");
// FeaturesOut->PutStrFmtLn("Photo %d", PPhotoTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Users %d", PUserTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Tags %d", PTagTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Comments %d", PCommentTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Locations %d", PLocationTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Photo - Owner %d", PPhotoOwnerTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Photo - Comment %d", PPhotoCommentTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Photo - Location %d", PPhotoLocationTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Comment - User %d", PCommentUserTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Comment - User %d", PCommentUserTbl->GetNumRows().Val);
//// FeaturesOut->PutStrFmtLn("Photo - Tagger %d", PPhotoTaggerTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Tagger - Tag %d", PTaggerTagTbl->GetNumRows().Val);
// FeaturesOut->PutStrFmtLn("Total number of nodes = %d", Graph->GetNodes());
// FeaturesOut->PutStrFmtLn("Total number of edges = %d", Graph->GetEdges());
PSOut TimeOut = TFOut::New(PrefixPath + TStr("time.txt"), true);
TimeOut->PutStrFmtLn("Experiment Weighted - %s - %s", PrefixPath.CStr(), (isPar ? "Parallel" : "Sequential"));
TimeOut->PutStrFmtLn("Input Time = %f", GetCPUTimeUsage(ts1, ts2));
TimeOut->PutStrFmtLn("Preprocessing Time = %f", GetCPUTimeUsage(ts2, ts3));
TimeOut->PutStrFmtLn("Conversion Time = %f", GetCPUTimeUsage(ts3, ts4));
TimeOut->PutStrFmtLn("Computing Time = %f", GetCPUTimeUsage(ts4, ts5)/nExps);
TimeOut->PutStrFmtLn("Output Time = %f", GetCPUTimeUsage(ts5, ts6));
return 0;
}