当前位置: 首页>>代码示例>>C++>>正文


C++ TGeoRotation::RotateZ方法代码示例

本文整理汇总了C++中TGeoRotation::RotateZ方法的典型用法代码示例。如果您正苦于以下问题:C++ TGeoRotation::RotateZ方法的具体用法?C++ TGeoRotation::RotateZ怎么用?C++ TGeoRotation::RotateZ使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TGeoRotation的用法示例。


在下文中一共展示了TGeoRotation::RotateZ方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: create_neuland_geo


//.........这里部分代码省略.........

  //------------------ wrapping Alu------------------------------------------
  TGeoShape* padle_h_box1 = new TGeoBBox("padle_h_box1",
					 neuLAND_paddle_dimx, 
					 neuLAND_paddle_dimy + neuLAND_wrapping1_dim, 
					 neuLAND_paddle_dimz + neuLAND_wrapping1_dim);
  TGeoShape* padle_h_box2 = new TGeoBBox("padle_h_box2",
					 neuLAND_paddle_dimx, 
					 neuLAND_paddle_dimy, 
					 neuLAND_paddle_dimz);
  
  // Create a composite shape
  TGeoCompositeShape *wrapping1 = new TGeoCompositeShape("diffbox", "padle_h_box1 - padle_h_box2");
  TGeoVolume *bvol1 = new TGeoVolume("wrapping1", wrapping1, pMedAl);

  //------------------ wrapping Tape------------------------------------------
  TGeoShape* padle_h_box3 = new TGeoBBox("padle_h_box3",
					 neuLAND_paddle_dimx,
					 neuLAND_paddle_dimy + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim, 
					 neuLAND_paddle_dimz + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim);
  TGeoShape* padle_h_box4 = new TGeoBBox("padle_h_box4",
					 neuLAND_paddle_dimx, 
					 neuLAND_paddle_dimy + neuLAND_wrapping1_dim, 
					 neuLAND_paddle_dimz + neuLAND_wrapping1_dim);

  // Create a composite shape
  TGeoCompositeShape *wrapping2 = new TGeoCompositeShape("diffbox", "padle_h_box3 - padle_h_box4");
  TGeoVolume *bvol2 = new TGeoVolume("wrapping2", wrapping2, pMed38);



  // Make the elementary assembly of the whole structure
  TGeoVolume *aLand = new TGeoVolumeAssembly("ALAND");

  Double_t total_dimx = neuLAND_paddle_dimx;
  Double_t total_dimy = neuLAND_paddle_dimy +
    neuLAND_wrapping1_dim + 
    neuLAND_wrapping2_dim + 
    neuLAND_gap_dim;
  Double_t total_dimz = neuLAND_paddle_dimz +
    neuLAND_wrapping1_dim +
    neuLAND_wrapping2_dim +
    neuLAND_gap_dim;
  
  //paddles
  TGeoRotation *zeroRotation = new TGeoRotation();
  zeroRotation->RotateX(0.);
  zeroRotation->RotateY(0.);
  zeroRotation->RotateZ(0.);

  TGeoRotation *rot1 = new TGeoRotation();
  rot1->RotateX(0.);
  rot1->RotateY(0.);
  rot1->RotateZ(90.);

  Double_t xx = 0.;
  Double_t yy = 0.;
  Double_t zz = 0.;
  
  aLand->AddNode(padle_h_box5, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation));
  aLand->AddNode(bvol1, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation));
  aLand->AddNode(bvol2, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation));

  TGeoVolume *cell = new TGeoVolumeAssembly("CELL");

  Int_t nindex = 0, i = 0;
  tx = 0.;
  tz = -neuLAND_depth_dim + total_dimz;
  for(tz = -neuLAND_depth_dim + total_dimz; tz < neuLAND_depth_dim; tz += total_dimz*2) {
    i += 1;
    for (ty = -total_dimx + total_dimy; ty < total_dimx; ty += total_dimy*2) {
      nindex++;
      if (i % 2 == 1) {
        cell->AddNode(aLand, nindex, new TGeoCombiTrans(tx, ty, tz, zeroRotation));
      } else {
        cell->AddNode(aLand, nindex, new TGeoCombiTrans(ty, tx, tz, rot1));
      }
    }
  }

  tx = 0.0;
  ty = 0.0;
  tz = fZ;
  TGeoCombiTrans *t0 = new TGeoCombiTrans(tx, ty, tz, zeroRotation);

  top->AddNode(cell, 1, /*GetGlobalPosition(t0)*/t0);



  // ---------------   Finish   -----------------------------------------------
  gGeoMan->CloseGeometry();
  gGeoMan->CheckOverlaps(0.001);
  gGeoMan->PrintOverlaps();
  gGeoMan->Test();

  TFile* geoFile = new TFile(geoFileName, "RECREATE");
  top->Write();
  geoFile->Close();
  // --------------------------------------------------------------------------
}
开发者ID:MohammadAlTurany,项目名称:R3BRoot,代码行数:101,代码来源:create_neuland_s438b_geo.C

示例2: create_tof_geo

void create_tof_geo(const char* geoTag)
{

    fGlobalTrans->SetTranslation(0.0,0.0,0.0);

    // -------   Load media from media file   -----------------------------------
    FairGeoLoader*    geoLoad = new FairGeoLoader("TGeo","FairGeoLoader");
    FairGeoInterface* geoFace = geoLoad->getGeoInterface();
    TString geoPath = gSystem->Getenv("VMCWORKDIR");
    TString medFile = geoPath + "/geometry/media_r3b.geo";
    geoFace->setMediaFile(medFile);
    geoFace->readMedia();
    gGeoMan = gGeoManager;
    // --------------------------------------------------------------------------



    // -------   Geometry file name (output)   ----------------------------------
    TString geoFileName = geoPath + "/geometry/tof_";
    geoFileName = geoFileName + geoTag + ".geo.root";
    // --------------------------------------------------------------------------



    // -----------------   Get and create the required media    -----------------
    FairGeoMedia*   geoMedia = geoFace->getMedia();
    FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder();

    FairGeoMedium* mAir      = geoMedia->getMedium("Air");
    if ( ! mAir ) Fatal("Main", "FairMedium Air not found");
    geoBuild->createMedium(mAir);
    TGeoMedium* pMed2 = gGeoMan->GetMedium("Air");
    if ( ! pMed2 ) Fatal("Main", "Medium Air not found");

    FairGeoMedium* mTof      = geoMedia->getMedium("plasticForTOF");
    if ( ! mTof ) Fatal("Main", "FairMedium plasticForTOF not found");
    geoBuild->createMedium(mTof);
    TGeoMedium* pMed34 = gGeoMan->GetMedium("plasticForTOF");
    if ( ! pMed34 ) Fatal("Main", "Medium plasticForTOF not found");
    // --------------------------------------------------------------------------



    // --------------   Create geometry and top volume  -------------------------
    gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom");
    gGeoMan->SetName("TOFgeom");
    TGeoVolume* top = new TGeoVolumeAssembly("TOP");
    gGeoMan->SetTopVolume(top);
    // --------------------------------------------------------------------------



    // out-of-file geometry definition
    Double_t dx,dy,dz;
    Double_t a;
    //   Double_t thx, phx, thy, phy, thz, phz;
    Double_t z, density, w;
    Int_t nel, numed;



    // TRANSFORMATION MATRICES
    // Combi transformation:
    dx = -417.359574; //Justyna
    dy = 2.400000;    //Justyna
    dz = 960.777114;  //Justyna

    //    dx = -421.33683; //Christoph
    //    dy = 2.12;    //Christoph
    //    dz = 958.387337;  //Christoph

    /*    dx = -171.1;  //position directrly (15cm) after DCH2
     dy = 2.400000;
     dz = 548.95;*/
    // dz = 0.;
    /*   // Rotation:
     thx = -121.000000;    phx = 0.000000;
     thy = 90.000000;    phy = 90.000000;
     thz = -31.000000;    phz = 0.000000;*/  //this

    //   TGeoRotation *pMatrix3 = new TGeoRotation("",thx,phx,thy,phy,thz,phz);  //this
    TGeoRotation *gRot = new TGeoRotation();
    gRot->RotateX(0.);
    gRot->RotateY(-31.000000);
    gRot->RotateZ(0.);

    TGeoCombiTrans*
    //   pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,pMatrix3);  //this
    pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,gRot);  //this







    /* PREVIOUS!!!
     // TRANSFORMATION MATRICES
     // Combi transformation:
     dx = 419.700000;
//.........这里部分代码省略.........
开发者ID:vadimr3b,项目名称:R3BRoot,代码行数:101,代码来源:create_tof_geo_s318.C

示例3: create_dch_geo


//.........这里部分代码省略.........

  TGeoShape* pAlBox = new TGeoBBox("AlBox",
				   alDx,
				   alDy,
				   alDz);

  TGeoVolume*
    pAlDchLog = new TGeoVolume("ALBoxLog",pAlBox, pMed21);
  pAlDchLog->SetVisLeaves(kTRUE);



  // Mylar Entrance exit windows
  Double_t mylDx= gasDx; //[cm]
  Double_t mylDy= gasDy; //[cm]
  Double_t mylDz= 0.0006; //[cm]
  TGeoShape* pMylarBox = new TGeoBBox("MylarBox",
				      mylDx,
				      mylDy,
				      mylDz);

  TGeoVolume*
    pMylDchLog = new TGeoVolume("MYLBoxLog",pMylarBox, pMed15);
  pMylDchLog->SetVisLeaves(kTRUE);



  // First assembly
  TGeoVolume *dch1 = new TGeoVolumeAssembly("DCH1");

  TGeoRotation *rot = new TGeoRotation();
  rot->RotateX(0.);
  rot->RotateY(0.);
  rot->RotateZ(0.);
  //Double_t tx = -3.5;	//correct values? active-area vs Al frame offsets?
  //Double_t ty = -5.;
  Double_t tx = +3.5;	//corrected values, active-area vs Al frame offsets. F.Wamers.
  Double_t ty = -3.5;
  Double_t tz = 0.;

  TGeoCombiTrans*
    pTransfo1 = new TGeoCombiTrans("", 0.,0.,0.,rot);
  TGeoCombiTrans*
    pTransfo2 = new TGeoCombiTrans("", tx,ty,tz,rot);
  TGeoCombiTrans*
    pTransfo3 = new TGeoCombiTrans("", -tx,-ty,-tz,rot); //new, in order to compensate Al vs Gas

  dch1->AddNode(pAlDchLog,0,pTransfo3);	//1->3
  pAlDchLog->AddNode(pGasDchLog,0,pTransfo2);	//place gas in aluminum, shifted
  pGasDchLog->AddNode(pActGasDchLog, 0,pTransfo1);	//place active in gas, centrally
  // Mylar Windows front+back
  //dch1->AddNode(pMylDchLog,0,new TGeoCombiTrans("", tx,ty,-alDz-mylDz,rot));
  //dch1->AddNode(pMylDchLog,1,new TGeoCombiTrans("", tx,ty, alDz+mylDz,rot));
  dch1->AddNode(pMylDchLog,0,new TGeoCombiTrans("", 0.,0.,-alDz-mylDz,rot));
  dch1->AddNode(pMylDchLog,1,new TGeoCombiTrans("", 0.,0., alDz+mylDz,rot));



  // Global Positioning
  //in agreement with the s318 tracker, those are supposed to be the centres of the active volumes!!!
  //Double_t pDch1x = -123.22 ; //Justyna 
  //Double_t pDch1y = 3.6 ;     //Justyna
  //Double_t pDch1z = 444.13 ;  //Justyna

  //Double_t pDch2x = -167.0 ;  //Justyna
  //Double_t pDch2y = 1.02 ;    //Justyna
开发者ID:MohammadAlTurany,项目名称:R3BRoot,代码行数:67,代码来源:create_dch_geo_s318.C

示例4: assembly

void assembly()
{
//--- Definition of a simple geometry
    gSystem->Load("libGeom");
    TGeoManager *geom = new TGeoManager("Assemblies",
                                        "Geometry using assemblies");
    Int_t i;
    //--- define some materials
    TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
    TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7);
//   //--- define some media
    TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
    TGeoMedium *Al = new TGeoMedium("Aluminium",2, matAl);

    //--- make the top container volume
    TGeoVolume *top = geom->MakeBox("TOP", Vacuum, 1000., 1000., 100.);
    geom->SetTopVolume(top);

    // Make the elementary assembly of the whole structure
    TGeoVolume *tplate = new TGeoVolumeAssembly("TOOTHPLATE");

    Int_t ntooth = 5;
    Double_t xplate = 25;
    Double_t yplate = 50;
    Double_t xtooth = 10;
    Double_t ytooth = 0.5*yplate/ntooth;
    Double_t dshift = 2.*xplate + xtooth;
    Double_t xt,yt;

    TGeoVolume *plate = geom->MakeBox("PLATE", Al, xplate,yplate,1);
    plate->SetLineColor(kBlue);
    TGeoVolume *tooth = geom->MakeBox("TOOTH", Al, xtooth,ytooth,1);
    tooth->SetLineColor(kBlue);
    tplate->AddNode(plate,1);
    for (i=0; i<ntooth; i++) {
        xt = xplate+xtooth;
        yt = -yplate + (4*i+1)*ytooth;
        tplate->AddNode(tooth, i+1, new TGeoTranslation(xt,yt,0));
        xt = -xplate-xtooth;
        yt = -yplate + (4*i+3)*ytooth;
        tplate->AddNode(tooth, ntooth+i+1, new TGeoTranslation(xt,yt,0));
    }

    TGeoRotation *rot1 = new TGeoRotation();
    rot1->RotateX(90);
    TGeoRotation *rot;
    // Make a hexagone cell out of 6 tooth plates. These can zip together
    // without generating overlaps (they are self-contained)
    TGeoVolume *cell = new TGeoVolumeAssembly("CELL");
    for (i=0; i<6; i++) {
        Double_t phi =  60.*i;
        Double_t phirad = phi*TMath::DegToRad();
        Double_t xp = dshift*TMath::Sin(phirad);
        Double_t yp = -dshift*TMath::Cos(phirad);
        rot = new TGeoRotation(*rot1);
        rot->RotateZ(phi);
        cell->AddNode(tplate,i+1,new TGeoCombiTrans(xp,yp,0,rot));
    }

    // Make a row as an assembly of cells, then combine rows in a honeycomb
    // structure. This again works without any need to define rows as
    // "overlapping"
    TGeoVolume *row = new TGeoVolumeAssembly("ROW");
    Int_t ncells = 5;
    for (i=0; i<ncells; i++) {
        Double_t ycell = (2*i+1)*(dshift+10);
        row->AddNode(cell, ncells+i+1, new TGeoTranslation(0,ycell,0));
        row->AddNode(cell,ncells-i,new TGeoTranslation(0,-ycell,0));
    }

    Double_t dxrow = 3.*(dshift+10.)*TMath::Tan(30.*TMath::DegToRad());
    Double_t dyrow = dshift+10.;
    Int_t nrows = 5;
    for (i=0; i<nrows; i++) {
        Double_t xrow = 0.5*(2*i+1)*dxrow;
        Double_t yrow = 0.5*dyrow;
        if ((i%2)==0) yrow = -yrow;
        top->AddNode(row, nrows+i+1, new TGeoTranslation(xrow,yrow,0));
        top->AddNode(row, nrows-i, new TGeoTranslation(-xrow,-yrow,0));
    }

    //--- close the geometry
    geom->CloseGeometry();

    geom->SetVisLevel(4);
    geom->SetVisOption(0);
    top->Draw();
}
开发者ID:Y--,项目名称:root,代码行数:88,代码来源:assembly.C

示例5: siPlaneXPosition

void EUTelGeometryTelescopeGeoDescription::translateSiPlane2TGeo(TGeoVolume* pvolumeWorld, int SensorId ) {
	double xc, yc, zc;   // volume center position 
	double alpha, beta, gamma;
	double rotRef1, rotRef2, rotRef3, rotRef4;

	std::stringstream strId;
	strId << SensorId;

	// Get sensor center position
	xc = siPlaneXPosition( SensorId );
	yc = siPlaneYPosition( SensorId );
	zc = siPlaneZPosition( SensorId );

	// Get sensor orientation
	alpha = siPlaneXRotation( SensorId ); //  in degrees !
	beta  = siPlaneYRotation( SensorId ); // 
	gamma = siPlaneZRotation( SensorId ); // 

	rotRef1 = siPlaneRotation1( SensorId );
	rotRef2 = siPlaneRotation2( SensorId );
	rotRef3 = siPlaneRotation3( SensorId );
	rotRef4 = siPlaneRotation4( SensorId );

	//We must check that the input is correct. Since this is a combination of initial rotations and reflections the determinate must be 1 or -1
	float determinant = rotRef1*rotRef4 - rotRef2*rotRef3  ;
	if(determinant==1 or determinant==-1) { 
		streamlog_out(DEBUG5) << "SensorID: " << SensorId << ". Determinant =  " <<determinant <<"  This is the correct determinate for this transformation." << std::endl;   
	} else {
		streamlog_out(ERROR5) << "SensorID: " << SensorId << ". Determinant =  " <<determinant << std::endl;   
		throw(lcio::Exception("The initial rotation and reflection matrix does not have determinant of 1 or -1. Gear file input must be wrong.")); 	
	}
	//Create spatial TGeoTranslation object.
	std::string stTranslationName = "matrixTranslationSensor";
	stTranslationName.append( strId.str() );
	TGeoTranslation* pMatrixTrans = new TGeoTranslation( stTranslationName.c_str(), xc, yc, zc );
	//ALL clsses deriving from TGeoMatrix are not owned by the ROOT geometry manager, invoking RegisterYourself() transfers
	//ownership and thus ROOT will clean up
	pMatrixTrans->RegisterYourself();      

	//Create TGeoRotation object. 
	//Translations are of course just positional changes in the global frame.
	//Note that each subsequent rotation is using the new coordinate system of the last transformation all the way back to the global frame.
	//The way to think about this is that each rotation is the multiplication of the last rotation matrix by a new one.
	//The order is:
	//Integer Z rotation and reflections.
	//Z rotations specified by in degrees.
	//X rotations 
	//Y rotations
	TGeoRotation* pMatrixRotRefCombined = new TGeoRotation();
	//We have to ensure that we retain a right handed coordinate system, i.e. if we only flip the x or y axis, we have to also flip the z-axis. If we flip both we have to flip twice.	
	double integerRotationsAndReflections[9]={rotRef1,rotRef2,0,rotRef3,rotRef4,0,0,0, determinant};
	pMatrixRotRefCombined->SetMatrix(integerRotationsAndReflections);
	std::cout << "Rotating plane " << SensorId << " to gamma: " << gamma << std::endl;
	pMatrixRotRefCombined->RotateZ(gamma);//Z Rotation (degrees)//This will again rotate a vector around z axis usign the right hand rule.  
	pMatrixRotRefCombined->RotateX(alpha);//X Rotations (degrees)//This will rotate a vector usign the right hand rule round the x-axis
	pMatrixRotRefCombined->RotateY(beta);//Y Rotations (degrees)//Same again for Y axis
	pMatrixRotRefCombined->RegisterYourself();//We must allow the matrix to be used by the TGeo manager.
	// Combined translation and orientation
	TGeoCombiTrans* combi = new TGeoCombiTrans( *pMatrixTrans, *pMatrixRotRefCombined );
	//This is to print to screen the rotation and translation matrices used to transform from local to global frame.
	streamlog_out(MESSAGE9) << "THESE MATRICES ARE USED TO TAKE A POINT IN THE LOCAL FRAME AND MOVE IT TO THE GLOBAL FRAME."  << std::endl;   
	streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Rotation/Reflection matrix for this object."  << std::endl;   
	const double* rotationMatrix =  combi->GetRotationMatrix();	
	streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0]<<"  "<<rotationMatrix[1]<<"   "<<rotationMatrix[2]<< std::endl;
	streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3]<<"  "<<rotationMatrix[4]<<"   "<<rotationMatrix[5]<< std::endl;
	streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6]<<"  "<<rotationMatrix[7]<<"   "<<rotationMatrix[8]<< std::endl;

	//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0] << std::setw(10) <<rotationMatrix[1]<< std::setw(10) <<rotationMatrix[2]<< std::setw(10)<< std::endl<< std::endl; 
	//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3] << std::setw(10) <<rotationMatrix[4]<< std::setw(10) <<rotationMatrix[5]<< std::setw(10)<< std::endl<< std::endl; 
	//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6] << std::setw(10) <<rotationMatrix[7]<< std::setw(10) <<rotationMatrix[8]<< std::setw(10)<< std::endl<< std::endl; 
	const double* translationMatrix =  combi->GetTranslation();	
	streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Translation vector for this object."  << std::endl;   
	streamlog_out(MESSAGE9) << std::setw(10) <<translationMatrix[0] << std::setw(10) <<translationMatrix[1]<< std::setw(10) <<translationMatrix[2]<< std::setw(10)<< std::endl; 

	combi->RegisterYourself();   
	
	// Construct object medium. Required for radiation length determination
	// assume SILICON, though all information except of radiation length is ignored
	double a       = 28.085500;     
	double z       = 14.000000;
	double density = 2.330000;
	double radl    = siPlaneRadLength( SensorId );
	double absl    = 45.753206;
	std::string stMatName = "materialSensor";
	stMatName.append( strId.str() );
	TGeoMaterial* pMat = new TGeoMaterial( stMatName.c_str(), a, z, density, -radl, absl );
	pMat->SetIndex( 1 );
	// Medium: medium_Sensor_SILICON
	int numed   = 0;  // medium number
	double par[8];
	par[0]  = 0.000000; // isvol
	par[1]  = 0.000000; // ifield
	par[2]  = 0.000000; // fieldm
	par[3]  = 0.000000; // tmaxfd
	par[4]  = 0.000000; // stemax
	par[5]  = 0.000000; // deemax
	par[6]  = 0.000000; // epsil
	par[7]  = 0.000000; // stmin
	std::string stMedName = "mediumSensor";
	stMedName.append( strId.str() );
//.........这里部分代码省略.........
开发者ID:schuetzepaul,项目名称:eutelescope,代码行数:101,代码来源:EUTelGeometryTelescopeGeoDescription.cpp

示例6: create_sfi_geo


//.........这里部分代码省略.........


  // --------------   Create geometry and top volume  -------------------------
  gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom");
  gGeoMan->SetName("GFIgeom");
  TGeoVolume* top = new TGeoVolumeAssembly("TOP");
  gGeoMan->SetTopVolume(top);
  // --------------------------------------------------------------------------
  
  //LABPOS(GFI1,-73.274339,0.069976,513.649524)
  Float_t dx = -73.274339; //dE tracker, correction due to wrong angle
  Float_t dy = 0.069976;
  Float_t dz = 513.649524;
  
  TGeoRotation *pMatrix3 = new TGeoRotation();
  //pMatrix3->RotateY(-16.7);
  TGeoCombiTrans*
  pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,pMatrix3);

  //LABPOS(GFI2,-147.135037,0.069976,729.680342)
  dx = -147.135037; //dE tracker, correction due to wrong angle
  dy = 0.069976;
  dz = 729.680342;

  TGeoRotation *pMatrix5 = new TGeoRotation();
  //pMatrix5->RotateY(-16.7);
  TGeoCombiTrans*
  pMatrix4 = new TGeoCombiTrans("", dx,dy,dz,pMatrix5);
  
  
  // World definition
  TGeoVolume* pWorld = gGeoManager->GetTopVolume();
  pWorld->SetVisLeaves(kTRUE);
  
  // SHAPES, VOLUMES AND GEOMETRICAL HIERARCHY 
  
  // Volume: GFILogWorld
  
  TGeoVolume*   pGFILogWorld = new TGeoVolumeAssembly("GFILogWorld");
  pGFILogWorld->SetVisLeaves(kTRUE);
  
  // Global positioning
  pWorld->AddNode( pGFILogWorld, 0, pMatrix2 );
  
  Float_t detector_size = 5.120000;
  Float_t fiber_thickness = 0.020000; 
  
  TGeoShape *pGFITube = new TGeoBBox("GFITube", fiber_thickness/2,detector_size/2,fiber_thickness/2);
  
  TGeoVolume* pGFILog = new TGeoVolume("SFILog",pGFITube, pMed35);

  TGeoShape *pGFITubeActive = new TGeoBBox("GFITubeActive", (fiber_thickness * .98)/2, detector_size/2-0.0001, (fiber_thickness * .98)/2);

  TGeoVolume* pGFILogActive = new TGeoVolume("SFI1Log",pGFITubeActive,pMed35);
  
  pGFILog->SetLineColor((Color_t) 1);
  pGFILog->SetVisLeaves(kTRUE);
  
  TGeoRotation *pMatrixTube = new TGeoRotation();
  pMatrixTube->RotateZ(90);
  
  pGFILog -> AddNode(pGFILogActive, 0, new TGeoCombiTrans());
  
  for(int fiber_id = 0; fiber_id < detector_size / fiber_thickness; fiber_id++)
  {
     pGFILogWorld->AddNode(pGFILog, fiber_id, 
		new TGeoCombiTrans("", 
			-detector_size / 2 + (fiber_id + .5) * fiber_thickness, 
			0,
			0,
			new TGeoRotation()
		)
	);
      pGFILogWorld->AddNode(pGFILog, fiber_id + detector_size / fiber_thickness, 
		new TGeoCombiTrans("", 
			0,
			-detector_size / 2 + (fiber_id + .5) * fiber_thickness,
			fiber_thickness,
			pMatrixTube
		)
	);
  }
  
  // Add the sensitive part
//  AddSensitiveVolume(pGFILog);
//  fNbOfSensitiveVol+=1;
  
  
  
  // ---------------   Finish   -----------------------------------------------
  gGeoMan->CloseGeometry();
  gGeoMan->CheckOverlaps(0.001);
  gGeoMan->PrintOverlaps();
  gGeoMan->Test();

  TFile* geoFile = new TFile(geoFileName, "RECREATE");
  top->Write();
  geoFile->Close();
  // --------------------------------------------------------------------------
}
开发者ID:malabi,项目名称:R3BRoot,代码行数:101,代码来源:create_sfi_geo.C


注:本文中的TGeoRotation::RotateZ方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。