本文整理汇总了C++中TGeoRotation::RotateZ方法的典型用法代码示例。如果您正苦于以下问题:C++ TGeoRotation::RotateZ方法的具体用法?C++ TGeoRotation::RotateZ怎么用?C++ TGeoRotation::RotateZ使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TGeoRotation
的用法示例。
在下文中一共展示了TGeoRotation::RotateZ方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: create_neuland_geo
//.........这里部分代码省略.........
//------------------ wrapping Alu------------------------------------------
TGeoShape* padle_h_box1 = new TGeoBBox("padle_h_box1",
neuLAND_paddle_dimx,
neuLAND_paddle_dimy + neuLAND_wrapping1_dim,
neuLAND_paddle_dimz + neuLAND_wrapping1_dim);
TGeoShape* padle_h_box2 = new TGeoBBox("padle_h_box2",
neuLAND_paddle_dimx,
neuLAND_paddle_dimy,
neuLAND_paddle_dimz);
// Create a composite shape
TGeoCompositeShape *wrapping1 = new TGeoCompositeShape("diffbox", "padle_h_box1 - padle_h_box2");
TGeoVolume *bvol1 = new TGeoVolume("wrapping1", wrapping1, pMedAl);
//------------------ wrapping Tape------------------------------------------
TGeoShape* padle_h_box3 = new TGeoBBox("padle_h_box3",
neuLAND_paddle_dimx,
neuLAND_paddle_dimy + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim,
neuLAND_paddle_dimz + neuLAND_wrapping1_dim + neuLAND_wrapping2_dim);
TGeoShape* padle_h_box4 = new TGeoBBox("padle_h_box4",
neuLAND_paddle_dimx,
neuLAND_paddle_dimy + neuLAND_wrapping1_dim,
neuLAND_paddle_dimz + neuLAND_wrapping1_dim);
// Create a composite shape
TGeoCompositeShape *wrapping2 = new TGeoCompositeShape("diffbox", "padle_h_box3 - padle_h_box4");
TGeoVolume *bvol2 = new TGeoVolume("wrapping2", wrapping2, pMed38);
// Make the elementary assembly of the whole structure
TGeoVolume *aLand = new TGeoVolumeAssembly("ALAND");
Double_t total_dimx = neuLAND_paddle_dimx;
Double_t total_dimy = neuLAND_paddle_dimy +
neuLAND_wrapping1_dim +
neuLAND_wrapping2_dim +
neuLAND_gap_dim;
Double_t total_dimz = neuLAND_paddle_dimz +
neuLAND_wrapping1_dim +
neuLAND_wrapping2_dim +
neuLAND_gap_dim;
//paddles
TGeoRotation *zeroRotation = new TGeoRotation();
zeroRotation->RotateX(0.);
zeroRotation->RotateY(0.);
zeroRotation->RotateZ(0.);
TGeoRotation *rot1 = new TGeoRotation();
rot1->RotateX(0.);
rot1->RotateY(0.);
rot1->RotateZ(90.);
Double_t xx = 0.;
Double_t yy = 0.;
Double_t zz = 0.;
aLand->AddNode(padle_h_box5, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation));
aLand->AddNode(bvol1, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation));
aLand->AddNode(bvol2, 1, new TGeoCombiTrans(xx, yy, zz, zeroRotation));
TGeoVolume *cell = new TGeoVolumeAssembly("CELL");
Int_t nindex = 0, i = 0;
tx = 0.;
tz = -neuLAND_depth_dim + total_dimz;
for(tz = -neuLAND_depth_dim + total_dimz; tz < neuLAND_depth_dim; tz += total_dimz*2) {
i += 1;
for (ty = -total_dimx + total_dimy; ty < total_dimx; ty += total_dimy*2) {
nindex++;
if (i % 2 == 1) {
cell->AddNode(aLand, nindex, new TGeoCombiTrans(tx, ty, tz, zeroRotation));
} else {
cell->AddNode(aLand, nindex, new TGeoCombiTrans(ty, tx, tz, rot1));
}
}
}
tx = 0.0;
ty = 0.0;
tz = fZ;
TGeoCombiTrans *t0 = new TGeoCombiTrans(tx, ty, tz, zeroRotation);
top->AddNode(cell, 1, /*GetGlobalPosition(t0)*/t0);
// --------------- Finish -----------------------------------------------
gGeoMan->CloseGeometry();
gGeoMan->CheckOverlaps(0.001);
gGeoMan->PrintOverlaps();
gGeoMan->Test();
TFile* geoFile = new TFile(geoFileName, "RECREATE");
top->Write();
geoFile->Close();
// --------------------------------------------------------------------------
}
示例2: create_tof_geo
void create_tof_geo(const char* geoTag)
{
fGlobalTrans->SetTranslation(0.0,0.0,0.0);
// ------- Load media from media file -----------------------------------
FairGeoLoader* geoLoad = new FairGeoLoader("TGeo","FairGeoLoader");
FairGeoInterface* geoFace = geoLoad->getGeoInterface();
TString geoPath = gSystem->Getenv("VMCWORKDIR");
TString medFile = geoPath + "/geometry/media_r3b.geo";
geoFace->setMediaFile(medFile);
geoFace->readMedia();
gGeoMan = gGeoManager;
// --------------------------------------------------------------------------
// ------- Geometry file name (output) ----------------------------------
TString geoFileName = geoPath + "/geometry/tof_";
geoFileName = geoFileName + geoTag + ".geo.root";
// --------------------------------------------------------------------------
// ----------------- Get and create the required media -----------------
FairGeoMedia* geoMedia = geoFace->getMedia();
FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder();
FairGeoMedium* mAir = geoMedia->getMedium("Air");
if ( ! mAir ) Fatal("Main", "FairMedium Air not found");
geoBuild->createMedium(mAir);
TGeoMedium* pMed2 = gGeoMan->GetMedium("Air");
if ( ! pMed2 ) Fatal("Main", "Medium Air not found");
FairGeoMedium* mTof = geoMedia->getMedium("plasticForTOF");
if ( ! mTof ) Fatal("Main", "FairMedium plasticForTOF not found");
geoBuild->createMedium(mTof);
TGeoMedium* pMed34 = gGeoMan->GetMedium("plasticForTOF");
if ( ! pMed34 ) Fatal("Main", "Medium plasticForTOF not found");
// --------------------------------------------------------------------------
// -------------- Create geometry and top volume -------------------------
gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom");
gGeoMan->SetName("TOFgeom");
TGeoVolume* top = new TGeoVolumeAssembly("TOP");
gGeoMan->SetTopVolume(top);
// --------------------------------------------------------------------------
// out-of-file geometry definition
Double_t dx,dy,dz;
Double_t a;
// Double_t thx, phx, thy, phy, thz, phz;
Double_t z, density, w;
Int_t nel, numed;
// TRANSFORMATION MATRICES
// Combi transformation:
dx = -417.359574; //Justyna
dy = 2.400000; //Justyna
dz = 960.777114; //Justyna
// dx = -421.33683; //Christoph
// dy = 2.12; //Christoph
// dz = 958.387337; //Christoph
/* dx = -171.1; //position directrly (15cm) after DCH2
dy = 2.400000;
dz = 548.95;*/
// dz = 0.;
/* // Rotation:
thx = -121.000000; phx = 0.000000;
thy = 90.000000; phy = 90.000000;
thz = -31.000000; phz = 0.000000;*/ //this
// TGeoRotation *pMatrix3 = new TGeoRotation("",thx,phx,thy,phy,thz,phz); //this
TGeoRotation *gRot = new TGeoRotation();
gRot->RotateX(0.);
gRot->RotateY(-31.000000);
gRot->RotateZ(0.);
TGeoCombiTrans*
// pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,pMatrix3); //this
pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,gRot); //this
/* PREVIOUS!!!
// TRANSFORMATION MATRICES
// Combi transformation:
dx = 419.700000;
//.........这里部分代码省略.........
示例3: create_dch_geo
//.........这里部分代码省略.........
TGeoShape* pAlBox = new TGeoBBox("AlBox",
alDx,
alDy,
alDz);
TGeoVolume*
pAlDchLog = new TGeoVolume("ALBoxLog",pAlBox, pMed21);
pAlDchLog->SetVisLeaves(kTRUE);
// Mylar Entrance exit windows
Double_t mylDx= gasDx; //[cm]
Double_t mylDy= gasDy; //[cm]
Double_t mylDz= 0.0006; //[cm]
TGeoShape* pMylarBox = new TGeoBBox("MylarBox",
mylDx,
mylDy,
mylDz);
TGeoVolume*
pMylDchLog = new TGeoVolume("MYLBoxLog",pMylarBox, pMed15);
pMylDchLog->SetVisLeaves(kTRUE);
// First assembly
TGeoVolume *dch1 = new TGeoVolumeAssembly("DCH1");
TGeoRotation *rot = new TGeoRotation();
rot->RotateX(0.);
rot->RotateY(0.);
rot->RotateZ(0.);
//Double_t tx = -3.5; //correct values? active-area vs Al frame offsets?
//Double_t ty = -5.;
Double_t tx = +3.5; //corrected values, active-area vs Al frame offsets. F.Wamers.
Double_t ty = -3.5;
Double_t tz = 0.;
TGeoCombiTrans*
pTransfo1 = new TGeoCombiTrans("", 0.,0.,0.,rot);
TGeoCombiTrans*
pTransfo2 = new TGeoCombiTrans("", tx,ty,tz,rot);
TGeoCombiTrans*
pTransfo3 = new TGeoCombiTrans("", -tx,-ty,-tz,rot); //new, in order to compensate Al vs Gas
dch1->AddNode(pAlDchLog,0,pTransfo3); //1->3
pAlDchLog->AddNode(pGasDchLog,0,pTransfo2); //place gas in aluminum, shifted
pGasDchLog->AddNode(pActGasDchLog, 0,pTransfo1); //place active in gas, centrally
// Mylar Windows front+back
//dch1->AddNode(pMylDchLog,0,new TGeoCombiTrans("", tx,ty,-alDz-mylDz,rot));
//dch1->AddNode(pMylDchLog,1,new TGeoCombiTrans("", tx,ty, alDz+mylDz,rot));
dch1->AddNode(pMylDchLog,0,new TGeoCombiTrans("", 0.,0.,-alDz-mylDz,rot));
dch1->AddNode(pMylDchLog,1,new TGeoCombiTrans("", 0.,0., alDz+mylDz,rot));
// Global Positioning
//in agreement with the s318 tracker, those are supposed to be the centres of the active volumes!!!
//Double_t pDch1x = -123.22 ; //Justyna
//Double_t pDch1y = 3.6 ; //Justyna
//Double_t pDch1z = 444.13 ; //Justyna
//Double_t pDch2x = -167.0 ; //Justyna
//Double_t pDch2y = 1.02 ; //Justyna
示例4: assembly
void assembly()
{
//--- Definition of a simple geometry
gSystem->Load("libGeom");
TGeoManager *geom = new TGeoManager("Assemblies",
"Geometry using assemblies");
Int_t i;
//--- define some materials
TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7);
// //--- define some media
TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
TGeoMedium *Al = new TGeoMedium("Aluminium",2, matAl);
//--- make the top container volume
TGeoVolume *top = geom->MakeBox("TOP", Vacuum, 1000., 1000., 100.);
geom->SetTopVolume(top);
// Make the elementary assembly of the whole structure
TGeoVolume *tplate = new TGeoVolumeAssembly("TOOTHPLATE");
Int_t ntooth = 5;
Double_t xplate = 25;
Double_t yplate = 50;
Double_t xtooth = 10;
Double_t ytooth = 0.5*yplate/ntooth;
Double_t dshift = 2.*xplate + xtooth;
Double_t xt,yt;
TGeoVolume *plate = geom->MakeBox("PLATE", Al, xplate,yplate,1);
plate->SetLineColor(kBlue);
TGeoVolume *tooth = geom->MakeBox("TOOTH", Al, xtooth,ytooth,1);
tooth->SetLineColor(kBlue);
tplate->AddNode(plate,1);
for (i=0; i<ntooth; i++) {
xt = xplate+xtooth;
yt = -yplate + (4*i+1)*ytooth;
tplate->AddNode(tooth, i+1, new TGeoTranslation(xt,yt,0));
xt = -xplate-xtooth;
yt = -yplate + (4*i+3)*ytooth;
tplate->AddNode(tooth, ntooth+i+1, new TGeoTranslation(xt,yt,0));
}
TGeoRotation *rot1 = new TGeoRotation();
rot1->RotateX(90);
TGeoRotation *rot;
// Make a hexagone cell out of 6 tooth plates. These can zip together
// without generating overlaps (they are self-contained)
TGeoVolume *cell = new TGeoVolumeAssembly("CELL");
for (i=0; i<6; i++) {
Double_t phi = 60.*i;
Double_t phirad = phi*TMath::DegToRad();
Double_t xp = dshift*TMath::Sin(phirad);
Double_t yp = -dshift*TMath::Cos(phirad);
rot = new TGeoRotation(*rot1);
rot->RotateZ(phi);
cell->AddNode(tplate,i+1,new TGeoCombiTrans(xp,yp,0,rot));
}
// Make a row as an assembly of cells, then combine rows in a honeycomb
// structure. This again works without any need to define rows as
// "overlapping"
TGeoVolume *row = new TGeoVolumeAssembly("ROW");
Int_t ncells = 5;
for (i=0; i<ncells; i++) {
Double_t ycell = (2*i+1)*(dshift+10);
row->AddNode(cell, ncells+i+1, new TGeoTranslation(0,ycell,0));
row->AddNode(cell,ncells-i,new TGeoTranslation(0,-ycell,0));
}
Double_t dxrow = 3.*(dshift+10.)*TMath::Tan(30.*TMath::DegToRad());
Double_t dyrow = dshift+10.;
Int_t nrows = 5;
for (i=0; i<nrows; i++) {
Double_t xrow = 0.5*(2*i+1)*dxrow;
Double_t yrow = 0.5*dyrow;
if ((i%2)==0) yrow = -yrow;
top->AddNode(row, nrows+i+1, new TGeoTranslation(xrow,yrow,0));
top->AddNode(row, nrows-i, new TGeoTranslation(-xrow,-yrow,0));
}
//--- close the geometry
geom->CloseGeometry();
geom->SetVisLevel(4);
geom->SetVisOption(0);
top->Draw();
}
示例5: siPlaneXPosition
void EUTelGeometryTelescopeGeoDescription::translateSiPlane2TGeo(TGeoVolume* pvolumeWorld, int SensorId ) {
double xc, yc, zc; // volume center position
double alpha, beta, gamma;
double rotRef1, rotRef2, rotRef3, rotRef4;
std::stringstream strId;
strId << SensorId;
// Get sensor center position
xc = siPlaneXPosition( SensorId );
yc = siPlaneYPosition( SensorId );
zc = siPlaneZPosition( SensorId );
// Get sensor orientation
alpha = siPlaneXRotation( SensorId ); // in degrees !
beta = siPlaneYRotation( SensorId ); //
gamma = siPlaneZRotation( SensorId ); //
rotRef1 = siPlaneRotation1( SensorId );
rotRef2 = siPlaneRotation2( SensorId );
rotRef3 = siPlaneRotation3( SensorId );
rotRef4 = siPlaneRotation4( SensorId );
//We must check that the input is correct. Since this is a combination of initial rotations and reflections the determinate must be 1 or -1
float determinant = rotRef1*rotRef4 - rotRef2*rotRef3 ;
if(determinant==1 or determinant==-1) {
streamlog_out(DEBUG5) << "SensorID: " << SensorId << ". Determinant = " <<determinant <<" This is the correct determinate for this transformation." << std::endl;
} else {
streamlog_out(ERROR5) << "SensorID: " << SensorId << ". Determinant = " <<determinant << std::endl;
throw(lcio::Exception("The initial rotation and reflection matrix does not have determinant of 1 or -1. Gear file input must be wrong."));
}
//Create spatial TGeoTranslation object.
std::string stTranslationName = "matrixTranslationSensor";
stTranslationName.append( strId.str() );
TGeoTranslation* pMatrixTrans = new TGeoTranslation( stTranslationName.c_str(), xc, yc, zc );
//ALL clsses deriving from TGeoMatrix are not owned by the ROOT geometry manager, invoking RegisterYourself() transfers
//ownership and thus ROOT will clean up
pMatrixTrans->RegisterYourself();
//Create TGeoRotation object.
//Translations are of course just positional changes in the global frame.
//Note that each subsequent rotation is using the new coordinate system of the last transformation all the way back to the global frame.
//The way to think about this is that each rotation is the multiplication of the last rotation matrix by a new one.
//The order is:
//Integer Z rotation and reflections.
//Z rotations specified by in degrees.
//X rotations
//Y rotations
TGeoRotation* pMatrixRotRefCombined = new TGeoRotation();
//We have to ensure that we retain a right handed coordinate system, i.e. if we only flip the x or y axis, we have to also flip the z-axis. If we flip both we have to flip twice.
double integerRotationsAndReflections[9]={rotRef1,rotRef2,0,rotRef3,rotRef4,0,0,0, determinant};
pMatrixRotRefCombined->SetMatrix(integerRotationsAndReflections);
std::cout << "Rotating plane " << SensorId << " to gamma: " << gamma << std::endl;
pMatrixRotRefCombined->RotateZ(gamma);//Z Rotation (degrees)//This will again rotate a vector around z axis usign the right hand rule.
pMatrixRotRefCombined->RotateX(alpha);//X Rotations (degrees)//This will rotate a vector usign the right hand rule round the x-axis
pMatrixRotRefCombined->RotateY(beta);//Y Rotations (degrees)//Same again for Y axis
pMatrixRotRefCombined->RegisterYourself();//We must allow the matrix to be used by the TGeo manager.
// Combined translation and orientation
TGeoCombiTrans* combi = new TGeoCombiTrans( *pMatrixTrans, *pMatrixRotRefCombined );
//This is to print to screen the rotation and translation matrices used to transform from local to global frame.
streamlog_out(MESSAGE9) << "THESE MATRICES ARE USED TO TAKE A POINT IN THE LOCAL FRAME AND MOVE IT TO THE GLOBAL FRAME." << std::endl;
streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Rotation/Reflection matrix for this object." << std::endl;
const double* rotationMatrix = combi->GetRotationMatrix();
streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0]<<" "<<rotationMatrix[1]<<" "<<rotationMatrix[2]<< std::endl;
streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3]<<" "<<rotationMatrix[4]<<" "<<rotationMatrix[5]<< std::endl;
streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6]<<" "<<rotationMatrix[7]<<" "<<rotationMatrix[8]<< std::endl;
//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0] << std::setw(10) <<rotationMatrix[1]<< std::setw(10) <<rotationMatrix[2]<< std::setw(10)<< std::endl<< std::endl;
//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3] << std::setw(10) <<rotationMatrix[4]<< std::setw(10) <<rotationMatrix[5]<< std::setw(10)<< std::endl<< std::endl;
//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6] << std::setw(10) <<rotationMatrix[7]<< std::setw(10) <<rotationMatrix[8]<< std::setw(10)<< std::endl<< std::endl;
const double* translationMatrix = combi->GetTranslation();
streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Translation vector for this object." << std::endl;
streamlog_out(MESSAGE9) << std::setw(10) <<translationMatrix[0] << std::setw(10) <<translationMatrix[1]<< std::setw(10) <<translationMatrix[2]<< std::setw(10)<< std::endl;
combi->RegisterYourself();
// Construct object medium. Required for radiation length determination
// assume SILICON, though all information except of radiation length is ignored
double a = 28.085500;
double z = 14.000000;
double density = 2.330000;
double radl = siPlaneRadLength( SensorId );
double absl = 45.753206;
std::string stMatName = "materialSensor";
stMatName.append( strId.str() );
TGeoMaterial* pMat = new TGeoMaterial( stMatName.c_str(), a, z, density, -radl, absl );
pMat->SetIndex( 1 );
// Medium: medium_Sensor_SILICON
int numed = 0; // medium number
double par[8];
par[0] = 0.000000; // isvol
par[1] = 0.000000; // ifield
par[2] = 0.000000; // fieldm
par[3] = 0.000000; // tmaxfd
par[4] = 0.000000; // stemax
par[5] = 0.000000; // deemax
par[6] = 0.000000; // epsil
par[7] = 0.000000; // stmin
std::string stMedName = "mediumSensor";
stMedName.append( strId.str() );
//.........这里部分代码省略.........
示例6: create_sfi_geo
//.........这里部分代码省略.........
// -------------- Create geometry and top volume -------------------------
gGeoMan = (TGeoManager*)gROOT->FindObject("FAIRGeom");
gGeoMan->SetName("GFIgeom");
TGeoVolume* top = new TGeoVolumeAssembly("TOP");
gGeoMan->SetTopVolume(top);
// --------------------------------------------------------------------------
//LABPOS(GFI1,-73.274339,0.069976,513.649524)
Float_t dx = -73.274339; //dE tracker, correction due to wrong angle
Float_t dy = 0.069976;
Float_t dz = 513.649524;
TGeoRotation *pMatrix3 = new TGeoRotation();
//pMatrix3->RotateY(-16.7);
TGeoCombiTrans*
pMatrix2 = new TGeoCombiTrans("", dx,dy,dz,pMatrix3);
//LABPOS(GFI2,-147.135037,0.069976,729.680342)
dx = -147.135037; //dE tracker, correction due to wrong angle
dy = 0.069976;
dz = 729.680342;
TGeoRotation *pMatrix5 = new TGeoRotation();
//pMatrix5->RotateY(-16.7);
TGeoCombiTrans*
pMatrix4 = new TGeoCombiTrans("", dx,dy,dz,pMatrix5);
// World definition
TGeoVolume* pWorld = gGeoManager->GetTopVolume();
pWorld->SetVisLeaves(kTRUE);
// SHAPES, VOLUMES AND GEOMETRICAL HIERARCHY
// Volume: GFILogWorld
TGeoVolume* pGFILogWorld = new TGeoVolumeAssembly("GFILogWorld");
pGFILogWorld->SetVisLeaves(kTRUE);
// Global positioning
pWorld->AddNode( pGFILogWorld, 0, pMatrix2 );
Float_t detector_size = 5.120000;
Float_t fiber_thickness = 0.020000;
TGeoShape *pGFITube = new TGeoBBox("GFITube", fiber_thickness/2,detector_size/2,fiber_thickness/2);
TGeoVolume* pGFILog = new TGeoVolume("SFILog",pGFITube, pMed35);
TGeoShape *pGFITubeActive = new TGeoBBox("GFITubeActive", (fiber_thickness * .98)/2, detector_size/2-0.0001, (fiber_thickness * .98)/2);
TGeoVolume* pGFILogActive = new TGeoVolume("SFI1Log",pGFITubeActive,pMed35);
pGFILog->SetLineColor((Color_t) 1);
pGFILog->SetVisLeaves(kTRUE);
TGeoRotation *pMatrixTube = new TGeoRotation();
pMatrixTube->RotateZ(90);
pGFILog -> AddNode(pGFILogActive, 0, new TGeoCombiTrans());
for(int fiber_id = 0; fiber_id < detector_size / fiber_thickness; fiber_id++)
{
pGFILogWorld->AddNode(pGFILog, fiber_id,
new TGeoCombiTrans("",
-detector_size / 2 + (fiber_id + .5) * fiber_thickness,
0,
0,
new TGeoRotation()
)
);
pGFILogWorld->AddNode(pGFILog, fiber_id + detector_size / fiber_thickness,
new TGeoCombiTrans("",
0,
-detector_size / 2 + (fiber_id + .5) * fiber_thickness,
fiber_thickness,
pMatrixTube
)
);
}
// Add the sensitive part
// AddSensitiveVolume(pGFILog);
// fNbOfSensitiveVol+=1;
// --------------- Finish -----------------------------------------------
gGeoMan->CloseGeometry();
gGeoMan->CheckOverlaps(0.001);
gGeoMan->PrintOverlaps();
gGeoMan->Test();
TFile* geoFile = new TFile(geoFileName, "RECREATE");
top->Write();
geoFile->Close();
// --------------------------------------------------------------------------
}