本文整理汇总了C++中TGeoRotation::RegisterYourself方法的典型用法代码示例。如果您正苦于以下问题:C++ TGeoRotation::RegisterYourself方法的具体用法?C++ TGeoRotation::RegisterYourself怎么用?C++ TGeoRotation::RegisterYourself使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TGeoRotation
的用法示例。
在下文中一共展示了TGeoRotation::RegisterYourself方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: siPlaneXPosition
void EUTelGeometryTelescopeGeoDescription::translateSiPlane2TGeo(TGeoVolume* pvolumeWorld, int SensorId ) {
double xc, yc, zc; // volume center position
double alpha, beta, gamma;
double rotRef1, rotRef2, rotRef3, rotRef4;
std::stringstream strId;
strId << SensorId;
// Get sensor center position
xc = siPlaneXPosition( SensorId );
yc = siPlaneYPosition( SensorId );
zc = siPlaneZPosition( SensorId );
// Get sensor orientation
alpha = siPlaneXRotation( SensorId ); // in degrees !
beta = siPlaneYRotation( SensorId ); //
gamma = siPlaneZRotation( SensorId ); //
rotRef1 = siPlaneRotation1( SensorId );
rotRef2 = siPlaneRotation2( SensorId );
rotRef3 = siPlaneRotation3( SensorId );
rotRef4 = siPlaneRotation4( SensorId );
//We must check that the input is correct. Since this is a combination of initial rotations and reflections the determinate must be 1 or -1
float determinant = rotRef1*rotRef4 - rotRef2*rotRef3 ;
if(determinant==1 or determinant==-1) {
streamlog_out(DEBUG5) << "SensorID: " << SensorId << ". Determinant = " <<determinant <<" This is the correct determinate for this transformation." << std::endl;
} else {
streamlog_out(ERROR5) << "SensorID: " << SensorId << ". Determinant = " <<determinant << std::endl;
throw(lcio::Exception("The initial rotation and reflection matrix does not have determinant of 1 or -1. Gear file input must be wrong."));
}
//Create spatial TGeoTranslation object.
std::string stTranslationName = "matrixTranslationSensor";
stTranslationName.append( strId.str() );
TGeoTranslation* pMatrixTrans = new TGeoTranslation( stTranslationName.c_str(), xc, yc, zc );
//ALL clsses deriving from TGeoMatrix are not owned by the ROOT geometry manager, invoking RegisterYourself() transfers
//ownership and thus ROOT will clean up
pMatrixTrans->RegisterYourself();
//Create TGeoRotation object.
//Translations are of course just positional changes in the global frame.
//Note that each subsequent rotation is using the new coordinate system of the last transformation all the way back to the global frame.
//The way to think about this is that each rotation is the multiplication of the last rotation matrix by a new one.
//The order is:
//Integer Z rotation and reflections.
//Z rotations specified by in degrees.
//X rotations
//Y rotations
TGeoRotation* pMatrixRotRefCombined = new TGeoRotation();
//We have to ensure that we retain a right handed coordinate system, i.e. if we only flip the x or y axis, we have to also flip the z-axis. If we flip both we have to flip twice.
double integerRotationsAndReflections[9]={rotRef1,rotRef2,0,rotRef3,rotRef4,0,0,0, determinant};
pMatrixRotRefCombined->SetMatrix(integerRotationsAndReflections);
std::cout << "Rotating plane " << SensorId << " to gamma: " << gamma << std::endl;
pMatrixRotRefCombined->RotateZ(gamma);//Z Rotation (degrees)//This will again rotate a vector around z axis usign the right hand rule.
pMatrixRotRefCombined->RotateX(alpha);//X Rotations (degrees)//This will rotate a vector usign the right hand rule round the x-axis
pMatrixRotRefCombined->RotateY(beta);//Y Rotations (degrees)//Same again for Y axis
pMatrixRotRefCombined->RegisterYourself();//We must allow the matrix to be used by the TGeo manager.
// Combined translation and orientation
TGeoCombiTrans* combi = new TGeoCombiTrans( *pMatrixTrans, *pMatrixRotRefCombined );
//This is to print to screen the rotation and translation matrices used to transform from local to global frame.
streamlog_out(MESSAGE9) << "THESE MATRICES ARE USED TO TAKE A POINT IN THE LOCAL FRAME AND MOVE IT TO THE GLOBAL FRAME." << std::endl;
streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Rotation/Reflection matrix for this object." << std::endl;
const double* rotationMatrix = combi->GetRotationMatrix();
streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0]<<" "<<rotationMatrix[1]<<" "<<rotationMatrix[2]<< std::endl;
streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3]<<" "<<rotationMatrix[4]<<" "<<rotationMatrix[5]<< std::endl;
streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6]<<" "<<rotationMatrix[7]<<" "<<rotationMatrix[8]<< std::endl;
//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[0] << std::setw(10) <<rotationMatrix[1]<< std::setw(10) <<rotationMatrix[2]<< std::setw(10)<< std::endl<< std::endl;
//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[3] << std::setw(10) <<rotationMatrix[4]<< std::setw(10) <<rotationMatrix[5]<< std::setw(10)<< std::endl<< std::endl;
//streamlog_out(MESSAGE9) << std::setw(10) <<rotationMatrix[6] << std::setw(10) <<rotationMatrix[7]<< std::setw(10) <<rotationMatrix[8]<< std::setw(10)<< std::endl<< std::endl;
const double* translationMatrix = combi->GetTranslation();
streamlog_out(MESSAGE9) << "SensorID: " << SensorId << " Translation vector for this object." << std::endl;
streamlog_out(MESSAGE9) << std::setw(10) <<translationMatrix[0] << std::setw(10) <<translationMatrix[1]<< std::setw(10) <<translationMatrix[2]<< std::setw(10)<< std::endl;
combi->RegisterYourself();
// Construct object medium. Required for radiation length determination
// assume SILICON, though all information except of radiation length is ignored
double a = 28.085500;
double z = 14.000000;
double density = 2.330000;
double radl = siPlaneRadLength( SensorId );
double absl = 45.753206;
std::string stMatName = "materialSensor";
stMatName.append( strId.str() );
TGeoMaterial* pMat = new TGeoMaterial( stMatName.c_str(), a, z, density, -radl, absl );
pMat->SetIndex( 1 );
// Medium: medium_Sensor_SILICON
int numed = 0; // medium number
double par[8];
par[0] = 0.000000; // isvol
par[1] = 0.000000; // ifield
par[2] = 0.000000; // fieldm
par[3] = 0.000000; // tmaxfd
par[4] = 0.000000; // stemax
par[5] = 0.000000; // deemax
par[6] = 0.000000; // epsil
par[7] = 0.000000; // stmin
std::string stMedName = "mediumSensor";
stMedName.append( strId.str() );
//.........这里部分代码省略.........
示例2: initializeTGeoDescription
/**
* Initialise ROOT geometry objects from GEAR objects
*
* @param geomName name of ROOT geometry object
* @param dumpRoot dump automatically generated ROOT geometry file for further inspection
*/
void EUTelGeometryTelescopeGeoDescription::initializeTGeoDescription( std::string& geomName, bool dumpRoot = false ) {
// #ifdef USE_TGEO
// get access to ROOT's geometry manager
if( _isGeoInitialized )
{
streamlog_out( WARNING3 ) << "EUTelGeometryTelescopeGeoDescription: Geometry already initialized, using old initialization" << std::endl;
return;
}
else
{
_geoManager = new TGeoManager("Telescope", "v0.1");
}
if( !_geoManager )
{
streamlog_out( ERROR3 ) << "Can't instantiate ROOT TGeoManager " << std::endl;
return;
}
// Create top world volume containing telescope/DUT geometry
// Create air mixture
// see http://pdg.lbl.gov/2013/AtomicNuclearProperties/HTML_PAGES/104.html
double air_density = 1.2e-3; // g/cm^3
double air_radlen = 36.62; // g/cm^2
TGeoMixture* pMatAir = new TGeoMixture("AIR",3,air_density);
pMatAir->DefineElement(0, 14.007, 7., 0.755267 ); //Nitrogen
pMatAir->DefineElement(1, 15.999, 8., 0.231781 ); //Oxygen
pMatAir->DefineElement(2, 39.948, 18., 0.012827 ); //Argon
pMatAir->DefineElement(3, 12.011, 6., 0.000124 ); //Carbon
pMatAir->SetRadLen( air_radlen );
// Medium: medium_World_AIR
TGeoMedium* pMedAir = new TGeoMedium("medium_World_AIR", 3, pMatAir );
// The World is the 10 x 10m x 10m box filled with air mixture
Double_t dx,dy,dz;
dx = 5000.000000; // [mm]
dy = 5000.000000; // [mm]
dz = 5000.000000; // [mm]
TGeoShape *pBoxWorld = new TGeoBBox("Box_World", dx,dy,dz);
// Volume: volume_World
TGeoVolume* pvolumeWorld = new TGeoVolume("volume_World",pBoxWorld, pMedAir);
pvolumeWorld->SetLineColor(4);
pvolumeWorld->SetLineWidth(3);
pvolumeWorld->SetVisLeaves(kTRUE);
// Set top volume of geometry
gGeoManager->SetTopVolume( pvolumeWorld );
// Iterate over registered GEAR objects and construct their TGeo representation
const Double_t PI = 3.141592653589793;
const Double_t DEG = 180./PI;
double xc, yc, zc; // volume center position
double alpha, beta, gamma;
IntVec::const_iterator itrPlaneId;
for ( itrPlaneId = _sensorIDVec.begin(); itrPlaneId != _sensorIDVec.end(); ++itrPlaneId ) {
std::stringstream strId;
strId << *itrPlaneId;
// Get sensor center position
xc = siPlaneXPosition( *itrPlaneId );
yc = siPlaneYPosition( *itrPlaneId );
zc = siPlaneZPosition( *itrPlaneId );
// Get sensor orientation
alpha = siPlaneXRotation( *itrPlaneId ); // [rad]
beta = siPlaneYRotation( *itrPlaneId ); // [rad]
gamma = siPlaneZRotation( *itrPlaneId ); // [rad]
// Spatial translations of the sensor center
string stTranslationName = "matrixTranslationSensor";
stTranslationName.append( strId.str() );
TGeoTranslation* pMatrixTrans = new TGeoTranslation( stTranslationName.c_str(), xc, yc, zc );
//ALL clsses deriving from TGeoMatrix are not owned by the ROOT geometry manager, invoking RegisterYourself() transfers
//ownership and thus ROOT will clean up
pMatrixTrans->RegisterYourself();
// Spatial rotation around sensor center
// TGeoRotation requires Euler angles in degrees
string stRotationName = "matrixRotationSensorX";
stRotationName.append( strId.str() );
TGeoRotation* pMatrixRotX = new TGeoRotation( stRotationName.c_str(), 0., alpha*DEG, 0.); // around X axis
stRotationName = "matrixRotationSensorY";
stRotationName.append( strId.str() );
TGeoRotation* pMatrixRotY = new TGeoRotation( stRotationName.c_str(), 90., beta*DEG, 0.); // around Y axis (combination of rotation around Z axis and new X axis)
//.........这里部分代码省略.........