当前位置: 首页>>代码示例>>C++>>正文


C++ SymmetricMatrix::i方法代码示例

本文整理汇总了C++中SymmetricMatrix::i方法的典型用法代码示例。如果您正苦于以下问题:C++ SymmetricMatrix::i方法的具体用法?C++ SymmetricMatrix::i怎么用?C++ SymmetricMatrix::i使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SymmetricMatrix的用法示例。


在下文中一共展示了SymmetricMatrix::i方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: test1

void test1(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 1 - traditional, bad\n";

   // traditional sum of squares and products method of calculation
   // but not adjusting means; maybe subject to round-off error

   // make matrix of predictor values with 1s into col 1 of matrix
   int npred1 = npred+1;        // number of cols including col of ones.
   Matrix X(nobs,npred1);
   X.Column(1) = 1.0;

   // load x1 and x2 into X
   //    [use << rather than = when loading arrays]
   X.Column(2) << x1;  X.Column(3) << x2;

   // vector of Y values
   ColumnVector Y(nobs); Y << y;

   // form sum of squares and product matrix
   //    [use << rather than = for copying Matrix into SymmetricMatrix]
   SymmetricMatrix SSQ; SSQ << X.t() * X;

   // calculate estimate
   //    [bracket last two terms to force this multiplication first]
   //    [ .i() means inverse, but inverse is not explicity calculated]
   ColumnVector A = SSQ.i() * (X.t() * Y);

   // Get variances of estimates from diagonal elements of inverse of SSQ
   // get inverse of SSQ - we need it for finding D
   DiagonalMatrix D; D << SSQ.i();
   ColumnVector V = D.AsColumn();

   // Calculate fitted values and residuals
   ColumnVector Fitted = X * A;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // Get diagonals of Hat matrix (an expensive way of doing this)
   DiagonalMatrix Hat;  Hat << X * (X.t() * X).i() * X.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";

   // make vector of standard errors
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(V(i)*ResVar);
   // use concatenation function to form matrix and use matrix print
   // to get two columns
   cout << setw(11) << setprecision(5) << (A | SE) << endl;

   cout << "\nObservations, fitted value, residual value, hat value\n";

   // use concatenation again; select only columns 2 to 3 of X
   cout << setw(9) << setprecision(3) <<
     (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
开发者ID:151706061,项目名称:sofa,代码行数:58,代码来源:example.cpp

示例2: trymatd

void trymatd()
{
   Tracer et("Thirteenth test of Matrix package");
   Tracer::PrintTrace();
   Matrix X(5,20);
   int i,j;
   for (j=1;j<=20;j++) X(1,j) = j+1;
   for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
   SymmetricMatrix S; S << X * X.t();
   Matrix SM = X * X.t() - S;
   Print(SM);
   LowerTriangularMatrix L = Cholesky(S);
   Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
   Print(Diff);
   {
      Tracer et1("Stage 1");
      LowerTriangularMatrix L1(5);
      Matrix Xt = X.t(); Matrix Xt2 = Xt;
      QRZT(X,L1);
      Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
      UpperTriangularMatrix Ut(5);
      QRZ(Xt,Ut);
      Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
      Matrix Y(3,20);
      for (j=1;j<=20;j++) Y(1,j) = 22-j;
      for (i=2;i<=3;i++) for (j=1;j<=20; j++)
         Y(i,j) = (long)Y(i-1,j) * j % 101;
      Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
      QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
      Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Y2 * Xt2 * S.i() - M * L.i();
      Clean(Diff,0.000000001); Print(Diff);
   }

   ColumnVector C1(5);
   {
      Tracer et1("Stage 2");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A = X;
      ColumnVector C2 = A.i() * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }

   {
      Tracer et1("Stage 3");
      X.ReSize(7,7);
      for (j=1;j<=7;j++) X(1,j) = j+1;
      for (i=2;i<=7;i++) for (j=1;j<=7; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(7);
      for (i=1;i<=7;i++) C1(i) = i*i;
      RowVector R1 = C1.t();
      Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
      Print(Diff);
   }

   {
      Tracer et1("Stage 4");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(5);
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A1 = X*X;
      ColumnVector C2 = A1.i() * C1; C1 = X.i()  * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }


   {
      Tracer et1("Stage 5");
      int n = 40;
      SymmetricBandMatrix B(n,2); B = 0.0;
      for (i=1; i<=n; i++)
      {
         B(i,i) = 6;
         if (i<=n-1) B(i,i+1) = -4;
         if (i<=n-2) B(i,i+2) = 1;
      }
      B(1,1) = 5; B(n,n) = 5;
      SymmetricMatrix A = B;
      ColumnVector X(n);
      X(1) = 429;
      for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
      X = X / 100000L;
      // the matrix B is rather ill-conditioned so the difficulty is getting
      // good agreement (we have chosen X very small) may not be surprising;
      // maximum element size in B.i() is around 1400
      ColumnVector Y1 = A.i() * X;
      LowerTriangularMatrix C1 = Cholesky(A);
      ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      UpperTriangularMatrix CU = C1.t().i();
//.........这里部分代码省略.........
开发者ID:JakaCikac,项目名称:katana_300_ros,代码行数:101,代码来源:tmtd.cpp

示例3: test2

void test2(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 2 - traditional, OK\n";

   // traditional sum of squares and products method of calculation
   // with subtraction of means - less subject to round-off error
   // than test1

   // make matrix of predictor values
   Matrix X(nobs,npred);

   // load x1 and x2 into X
   //    [use << rather than = when loading arrays]
   X.Column(1) << x1;  X.Column(2) << x2;

   // vector of Y values
   ColumnVector Y(nobs); Y << y;

   // make vector of 1s
   ColumnVector Ones(nobs); Ones = 1.0;

   // calculate means (averages) of x1 and x2 [ .t() takes transpose]
   RowVector M = Ones.t() * X / nobs;

   // and subtract means from x1 and x1
   Matrix XC(nobs,npred);
   XC = X - Ones * M;

   // do the same to Y [use Sum to get sum of elements]
   ColumnVector YC(nobs);
   Real m = Sum(Y) / nobs;  YC = Y - Ones * m;

   // form sum of squares and product matrix
   //    [use << rather than = for copying Matrix into SymmetricMatrix]
   SymmetricMatrix SSQ; SSQ << XC.t() * XC;

   // calculate estimate
   //    [bracket last two terms to force this multiplication first]
   //    [ .i() means inverse, but inverse is not explicity calculated]
   ColumnVector A = SSQ.i() * (XC.t() * YC);

   // calculate estimate of constant term
   //    [AsScalar converts 1x1 matrix to Real]
   Real a = m - (M * A).AsScalar();

   // Get variances of estimates from diagonal elements of inverse of SSQ
   //    [ we are taking inverse of SSQ - we need it for finding D ]
   Matrix ISSQ = SSQ.i(); DiagonalMatrix D; D << ISSQ;
   ColumnVector V = D.AsColumn();
   Real v = 1.0/nobs + (M * ISSQ * M.t()).AsScalar();
					    // for calc variance of const

   // Calculate fitted values and residuals
   int npred1 = npred+1;
   ColumnVector Fitted = X * A + a;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // Get diagonals of Hat matrix (an expensive way of doing this)
   Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
   DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   cout.setf(ios::fixed, ios::floatfield);
   cout << setw(11) << setprecision(5)  << a << " ";
   cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl;
   // make vector of standard errors
   ColumnVector SE(npred);
   for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
   // use concatenation function to form matrix and use matrix print
   // to get two columns
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) <<
     (X | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
开发者ID:151706061,项目名称:sofa,代码行数:78,代码来源:example.cpp

示例4: trymatd

void trymatd()
{
   Tracer et("Thirteenth test of Matrix package");
   Tracer::PrintTrace();
   Matrix X(5,20);
   int i,j;
   for (j=1;j<=20;j++) X(1,j) = j+1;
   for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
   SymmetricMatrix S; S << X * X.t();
   Matrix SM = X * X.t() - S;
   Print(SM);
   LowerTriangularMatrix L = Cholesky(S);
   Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
   Print(Diff);
   {
      Tracer et1("Stage 1");
      LowerTriangularMatrix L1(5);
      Matrix Xt = X.t(); Matrix Xt2 = Xt;
      QRZT(X,L1);
      Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
      UpperTriangularMatrix Ut(5);
      QRZ(Xt,Ut);
      Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
      Matrix Y(3,20);
      for (j=1;j<=20;j++) Y(1,j) = 22-j;
      for (i=2;i<=3;i++) for (j=1;j<=20; j++)
         Y(i,j) = (long)Y(i-1,j) * j % 101;
      Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
      QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
      Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Y2 * Xt2 * S.i() - M * L.i();
      Clean(Diff,0.000000001); Print(Diff);
   }

   ColumnVector C1(5);
   {
      Tracer et1("Stage 2");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A = X;
      ColumnVector C2 = A.i() * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }

   {
      Tracer et1("Stage 3");
      X.ReSize(7,7);
      for (j=1;j<=7;j++) X(1,j) = j+1;
      for (i=2;i<=7;i++) for (j=1;j<=7; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(7);
      for (i=1;i<=7;i++) C1(i) = i*i;
      RowVector R1 = C1.t();
      Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
      Print(Diff);
   }

   {
      Tracer et1("Stage 4");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(5);
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A1 = X*X;
      ColumnVector C2 = A1.i() * C1; C1 = X.i()  * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }


   {
      Tracer et1("Stage 5");
      int n = 40;
      SymmetricBandMatrix B(n,2); B = 0.0;
      for (i=1; i<=n; i++)
      {
         B(i,i) = 6;
         if (i<=n-1) B(i,i+1) = -4;
         if (i<=n-2) B(i,i+2) = 1;
      }
      B(1,1) = 5; B(n,n) = 5;
      SymmetricMatrix A = B;
      ColumnVector X(n);
      X(1) = 429;
      for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
      X = X / 100000L;
      // the matrix B is rather ill-conditioned so the difficulty is getting
      // good agreement (we have chosen X very small) may not be surprising;
      // maximum element size in B.i() is around 1400
      ColumnVector Y1 = A.i() * X;
      LowerTriangularMatrix C1 = Cholesky(A);
      ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      UpperTriangularMatrix CU = C1.t().i();
//.........这里部分代码省略.........
开发者ID:99731,项目名称:GoTools,代码行数:101,代码来源:tmtd.cpp


注:本文中的SymmetricMatrix::i方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。