本文整理汇总了C++中SymmetricMatrix::Nrows方法的典型用法代码示例。如果您正苦于以下问题:C++ SymmetricMatrix::Nrows方法的具体用法?C++ SymmetricMatrix::Nrows怎么用?C++ SymmetricMatrix::Nrows使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SymmetricMatrix
的用法示例。
在下文中一共展示了SymmetricMatrix::Nrows方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: lap
std::vector<int> fiedler_reorder(const SymmetricMatrix& m)
{
SymmetricMatrix absm=m;
const int nrows=m.Nrows();
for (int i=0;i<nrows;++i) {
for (int j=0;j<=i;++j){
//absolute value
absm.element(i,j)=std::fabs(absm.element(i,j));
}
}
//laplacian
SymmetricMatrix lap(nrows);
lap=0.;
for (int i=0;i<nrows;++i)
lap.element(i,i)=absm.Row(i+1).Sum();
lap-=absm;
DiagonalMatrix eigs;
Matrix vecs;
EigenValues(lap,eigs,vecs);
ColumnVector fvec=vecs.Column(2);
std::vector<double> fvec_stl(nrows);
//copies over fvec to fvec_stl
std::copy(&fvec.element(0),&fvec.element(0)+nrows,fvec_stl.begin());
std::vector<int> findices;
//sorts the data by eigenvalue in ascending order
sort_data_to_indices(fvec_stl,findices);
return findices;
/* BLOCK works with findices*/
}
示例2: Print
void Print(const SymmetricMatrix& X)
{
++PCN;
cout << "\nMatrix type: " << X.Type().Value() << " (";
cout << X.Nrows() << ", ";
cout << X.Ncols() << ")\n\n";
if (X.IsZero()) { cout << "All elements are zero\n" << flush; return; }
int nr=X.Nrows(); int nc=X.Ncols();
for (int i=1; i<=nr; i++)
{
int j;
for (j=1; j<i; j++) cout << X(j,i) << "\t";
for (j=i; j<=nc; j++) cout << X(i,j) << "\t";
cout << "\n";
}
cout << flush; ++PCZ;
}
示例3: et
static void tred3(const SymmetricMatrix& X, DiagonalMatrix& D,
DiagonalMatrix& E, SymmetricMatrix& A)
{
Tracer et("Evalue(tred3)");
Real tol =
FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon();
int n = X.Nrows(); A = X; D.ReSize(n); E.ReSize(n);
Real* ei = E.Store() + n;
for (int i = n-1; i >= 0; i--)
{
Real h = 0.0; Real f;
Real* d = D.Store(); Real* a = A.Store() + (i*(i+1))/2; int k = i;
while (k--) { f = *a++; *d++ = f; h += square(f); }
if (h <= tol) { *(--ei) = 0.0; h = 0.0; }
else
{
Real g = sign(-sqrt(h), f); *(--ei) = g; h -= f*g;
f -= g; *(d-1) = f; *(a-1) = f; f = 0.0;
Real* dj = D.Store(); Real* ej = E.Store(); int j;
for (j = 0; j < i; j++)
{
Real* dk = D.Store(); Real* ak = A.Store()+(j*(j+1))/2;
Real g = 0.0; k = j;
while (k--) g += *ak++ * *dk++;
k = i-j; int l = j;
while (k--) { g += *ak * *dk++; ak += ++l; }
g /= h; *ej++ = g; f += g * *dj++;
}
Real hh = f / (2 * h); Real* ak = A.Store();
dj = D.Store(); ej = E.Store();
for (j = 0; j < i; j++)
{
f = *dj++; g = *ej - hh * f; *ej++ = g;
Real* dk = D.Store(); Real* ek = E.Store(); k = j+1;
while (k--) { *ak++ -= (f * *ek++ + g * *dk++); }
}
}
*d = *a; *a = h;
}
}
示例4: Cholesky
ReturnMatrix Cholesky(const SymmetricMatrix& S)
{
REPORT
Tracer trace("Cholesky");
int nr = S.Nrows();
LowerTriangularMatrix T(nr);
Real* s = S.Store(); Real* t = T.Store(); Real* ti = t;
for (int i=0; i<nr; i++)
{
Real* tj = t; Real sum; int k;
for (int j=0; j<i; j++)
{
Real* tk = ti; sum = 0.0; k = j;
while (k--) { sum += *tj++ * *tk++; }
*tk = (*s++ - sum) / *tj++;
}
sum = 0.0; k = i;
while (k--) { sum += square(*ti++); }
Real d = *s++ - sum;
if (d<=0.0) Throw(NPDException(S));
*ti++ = sqrt(d);
}
T.release(); return T.for_return();
}
示例5: Jacobi
void Jacobi(const SymmetricMatrix& X, DiagonalMatrix& D, SymmetricMatrix& A,
Matrix& V, bool eivec)
{
Real epsilon = FloatingPointPrecision::Epsilon();
Tracer et("Jacobi");
REPORT
int n = X.Nrows(); DiagonalMatrix B(n), Z(n); D.resize(n); A = X;
if (eivec) { REPORT V.resize(n,n); D = 1.0; V = D; }
B << A; D = B; Z = 0.0; A.Inject(Z);
bool converged = false;
for (int i=1; i<=50; i++)
{
Real sm=0.0; Real* a = A.Store(); int p = A.Storage();
while (p--) sm += fabs(*a++); // have previously zeroed diags
if (sm==0.0) { REPORT converged = true; break; }
Real tresh = (i<4) ? 0.2 * sm / square(n) : 0.0; a = A.Store();
for (p = 0; p < n; p++)
{
Real* ap1 = a + (p*(p+1))/2;
Real& zp = Z.element(p); Real& dp = D.element(p);
for (int q = p+1; q < n; q++)
{
Real* ap = ap1; Real* aq = a + (q*(q+1))/2;
Real& zq = Z.element(q); Real& dq = D.element(q);
Real& apq = A.element(q,p);
Real g = 100 * fabs(apq); Real adp = fabs(dp); Real adq = fabs(dq);
if (i>4 && g < epsilon*adp && g < epsilon*adq) { REPORT apq = 0.0; }
else if (fabs(apq) > tresh)
{
REPORT
Real t; Real h = dq - dp; Real ah = fabs(h);
if (g < epsilon*ah) { REPORT t = apq / h; }
else
{
REPORT
Real theta = 0.5 * h / apq;
t = 1.0 / ( fabs(theta) + sqrt(1.0 + square(theta)) );
if (theta<0.0) { REPORT t = -t; }
}
Real c = 1.0 / sqrt(1.0 + square(t)); Real s = t * c;
Real tau = s / (1.0 + c); h = t * apq;
zp -= h; zq += h; dp -= h; dq += h; apq = 0.0;
int j = p;
while (j--)
{
g = *ap; h = *aq;
*ap++ = g-s*(h+g*tau); *aq++ = h+s*(g-h*tau);
}
int ip = p+1; j = q-ip; ap += ip++; aq++;
while (j--)
{
g = *ap; h = *aq;
*ap = g-s*(h+g*tau); *aq++ = h+s*(g-h*tau);
ap += ip++;
}
if (q < n-1) // last loop is non-empty
{
int iq = q+1; j = n-iq; ap += ip++; aq += iq++;
for (;;)
{
g = *ap; h = *aq;
*ap = g-s*(h+g*tau); *aq = h+s*(g-h*tau);
if (!(--j)) break;
ap += ip++; aq += iq++;
}
}
if (eivec)
{
REPORT
RectMatrixCol VP(V,p); RectMatrixCol VQ(V,q);
Rotate(VP, VQ, tau, s);
}
}
}
}
B = B + Z; D = B; Z = 0.0;
}
if (!converged) Throw(ConvergenceException(X));
if (eivec) SortSV(D, V, true);
else SortAscending(D);
}