本文整理汇总了C++中SuffixTree::splitEdge方法的典型用法代码示例。如果您正苦于以下问题:C++ SuffixTree::splitEdge方法的具体用法?C++ SuffixTree::splitEdge怎么用?C++ SuffixTree::splitEdge使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SuffixTree
的用法示例。
在下文中一共展示了SuffixTree::splitEdge方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: correctMerge
void correctMerge(unsigned int v, unsigned int parentsPlace, SuffixTree &merged,
IndexedPair<MergeTreesStruct> &updatedTrees,
const vector <unsigned int> &trueLength, const vector <int> &input,
unsigned int copyTree
) {
if (merged[v].isHiddenInfo()) {
doSomething(updatedTrees, [&merged, &v] (MergeTreesStruct &tree) {
tree.evaluate(merged, v);
});
if (copyTree == 2 && merged[v].depth != trueLength[v]) {
unsigned int commonLength = trueLength[v]
- merged[merged[v].parent].depth;
MergeTreesStruct& donor = minimal(updatedTrees,
[&input, &commonLength] (MergeTreesStruct &tree)
-> int {
auto const &node = tree.tree[tree.info];
return input[tree.suffix[tree.info]
+ (node.parent == -1 ? 0 : tree.tree[node.parent].depth)
+ commonLength];
}
);
copyTree = donor.number;
copyNodeExceptParentAndChildren(donor.tree[donor.info], merged[v]);
unsigned int newNodeIndex = merged.splitEdge(merged[v].parent,
parentsPlace, commonLength
);
unsigned int newCopy = merged.newNode(newNodeIndex);
merged[newNodeIndex].push_back(newCopy);
MergeTreesStruct ¬Donor = *xorPointers(&donor, &updatedTrees[0],
&updatedTrees[1]
);
copyNodeExceptParentAndChildren(notDonor.tree[notDonor.info],
merged[newCopy]
);
merged[newCopy].indexOfParentEdge += commonLength;
copySubTree(notDonor.tree, merged, notDonor.info, newCopy);
} else {
MergeTreesStruct &donor = minimal(updatedTrees,
[©Tree] (MergeTreesStruct &tree) -> pair<bool, bool> {
return make_pair(copyTree == 2 || copyTree != tree.number,
!(tree.tree[tree.info].leaf != -1)
);
}
);
copyNodeExceptParentAndChildren(donor.tree[donor.info], merged[v]);
}
}
if (copyTree != 2 && merged[v].leaf != -1
&& merged[v].leaf % 2 != copyTree) {
merged[v].leaf = -1;
}
for (unsigned int i = 0; i < merged[v].size(); ++i) {
unsigned int u = merged[v][i];
correctMerge(u, i, merged, updatedTrees, trueLength, input, copyTree);
}
}
示例2: buildSuffixTreeFromSA
SuffixTree buildSuffixTreeFromSA(vector <unsigned int> &sa,
vector <unsigned int> &lcp,
unsigned int length
) {
vector <int> tmp;
SuffixTree result = buildTempSuffixTree(tmp);
int newNodeIndex
= result.newNode(result.root, sa[0], length - sa[0], sa[0]);
result[result.root].push_back(newNodeIndex);
unsigned int current = newNodeIndex;
for (unsigned int i = 1; i < sa.size(); ++i) {
while (result[current].parent != -1
&& result[result[current].parent].depth >= lcp[i - 1]
) {
current = result[current].parent;
}
unsigned int parent;
if (result[current].parent != -1 &&
result[result[current].parent].depth == lcp[i - 1]
) {
parent = result[current].parent;
} else if (result[current].depth == lcp[i - 1]) {
parent = current;
} else {
unsigned int currentParent = result[current].parent;
parent = result.splitEdge(currentParent,
result[currentParent].size() - 1,
lcp[i - 1] - result[currentParent].depth
);
result[parent].leaf = (length - sa[i] == lcp[i - 1] ? sa[i] : -1);
}
if (lcp[i - 1] != length - sa[i]) {
newNodeIndex = result.newNode(parent, sa[i] + lcp[i - 1],
length - sa[i], sa[i]
);
result[parent].push_back(newNodeIndex);
parent = newNodeIndex;
}
current = parent;
}
return result;
}
示例3: decompressDfs
int decompressDfs(unsigned int v, unsigned int inParentIndex, SuffixTree &tree,
const vector <int> &input, unsigned int depth
) {
int leaf = -1;
unsigned int oldDepth = tree[v].depth;
tree[v].depth = depth;
for (unsigned int i = 0; i < tree[v].size(); ++i) {
unsigned int u = tree[v][i];
int newLeaf = decompressDfs(u, i, tree, input,
depth + tree[u].lengthOfEdge(tree, oldDepth) * 2
- (tree[u].lastIndex(tree, oldDepth) == input.size() / 2 + 1)
);
if (leaf == -1) {
leaf = newLeaf;
}
}
tree[v].indexOfParentEdge *= 2;
if (tree[v].leaf != -1) {
tree[v].leaf = min(tree[v].leaf * 2, static_cast<int>(input.size()));
}
vector <unsigned int> myNewChildren;
if (tree[v].size()) {
vector <unsigned int> similarKids;
unsigned int firstKidIndex = 0;
similarKids.push_back(tree[v][0]);
for (unsigned int i = 1; i <= tree[v].size(); ++i) {
if (i != tree[v].size()) {
unsigned int current = tree[v][i];
unsigned int previous = tree[v][i - 1];
while (i < tree[v].size()
&& input[tree[current].indexOfParentEdge]
== input[tree[previous].indexOfParentEdge]
) {
similarKids.push_back(current);
++i;
previous = current;
if (i != tree[v].size()) {
current = tree[v][i];
}
}
}
if (similarKids.size() != 1) {
unsigned int newNodeIndex = tree.splitEdge(v, firstKidIndex, 1);
auto &newNode = tree[newNodeIndex];
for (unsigned int j = 1; j < similarKids.size(); ++j) {
auto ¤tChild = tree[similarKids[j]];
currentChild.parent = newNodeIndex;
++currentChild.indexOfParentEdge;
newNode.push_back(similarKids[j]);
}
if (newNode.size()
&& tree[newNode[0]].lengthOfEdge(tree) == 0
) {
newNode.leaf = tree[newNode[0]].leaf;
tree.deleteUselessNode(newNode[0], 0, newNode.leaf);
newNode.deleteFirstChild();
}
myNewChildren.push_back(newNodeIndex);
tree.checkNode(tree[newNodeIndex]);
} else {
myNewChildren.push_back(similarKids.back());
}
if (i != tree[v].size()) {
similarKids.clear();
similarKids.push_back(tree[v][i]);
firstKidIndex = i;
}
}
}
tree[v].renewChildren(myNewChildren);
if (tree[v].size() == 1 && v != tree.root && tree[v].leaf == -1) {
tree.deleteUselessNode(v, inParentIndex, leaf);
}
if (tree[v].leaf != -1) {
leaf = tree[v].leaf;
}
return leaf;
}