当前位置: 首页>>代码示例>>C++>>正文


C++ SuffixTree::splitEdge方法代码示例

本文整理汇总了C++中SuffixTree::splitEdge方法的典型用法代码示例。如果您正苦于以下问题:C++ SuffixTree::splitEdge方法的具体用法?C++ SuffixTree::splitEdge怎么用?C++ SuffixTree::splitEdge使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SuffixTree的用法示例。


在下文中一共展示了SuffixTree::splitEdge方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: correctMerge

void correctMerge(unsigned int v, unsigned int parentsPlace, SuffixTree &merged,
    IndexedPair<MergeTreesStruct> &updatedTrees,
    const vector <unsigned int> &trueLength, const vector <int> &input,
    unsigned int copyTree
) {
    if (merged[v].isHiddenInfo()) {
        doSomething(updatedTrees, [&merged, &v] (MergeTreesStruct &tree) {
            tree.evaluate(merged, v);
        });
        if (copyTree == 2 && merged[v].depth != trueLength[v]) {
            unsigned int commonLength = trueLength[v]
                - merged[merged[v].parent].depth;
            MergeTreesStruct& donor = minimal(updatedTrees,
                [&input, &commonLength] (MergeTreesStruct &tree)
                    -> int {
                    auto const &node = tree.tree[tree.info];
                    return input[tree.suffix[tree.info]
                        + (node.parent == -1 ? 0 : tree.tree[node.parent].depth)
                        + commonLength];
                }
            );
            copyTree = donor.number;
            copyNodeExceptParentAndChildren(donor.tree[donor.info], merged[v]);
            unsigned int newNodeIndex = merged.splitEdge(merged[v].parent,
                parentsPlace, commonLength
            );
            unsigned int newCopy = merged.newNode(newNodeIndex);
            merged[newNodeIndex].push_back(newCopy);
            MergeTreesStruct &notDonor = *xorPointers(&donor, &updatedTrees[0],
                &updatedTrees[1]
            );
            copyNodeExceptParentAndChildren(notDonor.tree[notDonor.info],
                merged[newCopy]
            );
            merged[newCopy].indexOfParentEdge += commonLength;
            copySubTree(notDonor.tree, merged, notDonor.info, newCopy);
        } else {
            MergeTreesStruct &donor = minimal(updatedTrees,
                [&copyTree] (MergeTreesStruct &tree) -> pair<bool, bool> {
                    return make_pair(copyTree == 2 || copyTree != tree.number,
                        !(tree.tree[tree.info].leaf != -1)
                    );
                }
            );
            copyNodeExceptParentAndChildren(donor.tree[donor.info], merged[v]);
        }
    }
    if (copyTree != 2 && merged[v].leaf != -1
            && merged[v].leaf % 2 != copyTree) {
        merged[v].leaf = -1;
    }
    for (unsigned int i = 0; i < merged[v].size(); ++i) {
        unsigned int u = merged[v][i];
        correctMerge(u, i, merged, updatedTrees, trueLength, input, copyTree);
    }
}
开发者ID:thefacetakt,项目名称:mipt-3sem-algo-tasks,代码行数:56,代码来源:farach.cpp

示例2: buildSuffixTreeFromSA

SuffixTree buildSuffixTreeFromSA(vector <unsigned int> &sa,
    vector <unsigned int> &lcp,
    unsigned int length
) {
    vector <int> tmp;
    SuffixTree result = buildTempSuffixTree(tmp);
    int newNodeIndex
        = result.newNode(result.root, sa[0], length - sa[0], sa[0]);
    result[result.root].push_back(newNodeIndex);
    unsigned int current = newNodeIndex;

    for (unsigned int i = 1; i < sa.size(); ++i) {
        while (result[current].parent != -1
            && result[result[current].parent].depth >= lcp[i - 1]
        ) {
            current = result[current].parent;
        }
        unsigned int parent;
        if (result[current].parent != -1 &&
            result[result[current].parent].depth == lcp[i - 1]
        ) {
            parent = result[current].parent;
        } else if (result[current].depth == lcp[i - 1]) {
            parent = current;
        } else {
            unsigned int currentParent = result[current].parent;
            parent = result.splitEdge(currentParent,
                result[currentParent].size() - 1,
                lcp[i - 1] - result[currentParent].depth
            );
            result[parent].leaf = (length - sa[i] == lcp[i - 1] ? sa[i] : -1);
        }
        if (lcp[i - 1] != length - sa[i]) {
            newNodeIndex = result.newNode(parent, sa[i] + lcp[i - 1],
                length - sa[i], sa[i]
            );
            result[parent].push_back(newNodeIndex);
            parent = newNodeIndex;
        }
        current = parent;
    }
    return result;
}
开发者ID:thefacetakt,项目名称:mipt-3sem-algo-tasks,代码行数:43,代码来源:farach.cpp

示例3: decompressDfs

int decompressDfs(unsigned int v, unsigned int inParentIndex, SuffixTree &tree,
    const vector <int> &input, unsigned int depth
) {
    int leaf = -1;
    unsigned int oldDepth = tree[v].depth;
    tree[v].depth = depth;

    for (unsigned int i = 0; i < tree[v].size(); ++i) {
        unsigned int u = tree[v][i];
        int newLeaf = decompressDfs(u, i, tree, input,
            depth + tree[u].lengthOfEdge(tree, oldDepth) * 2
            - (tree[u].lastIndex(tree, oldDepth) == input.size() / 2 + 1)
        );
        if (leaf == -1) {
            leaf = newLeaf;
        }
    }
    tree[v].indexOfParentEdge *= 2;
    if (tree[v].leaf != -1) {
        tree[v].leaf = min(tree[v].leaf * 2, static_cast<int>(input.size()));
    }

    vector <unsigned int> myNewChildren;
    if (tree[v].size()) {
        vector <unsigned int> similarKids;
        unsigned int firstKidIndex = 0;
        similarKids.push_back(tree[v][0]);
        for (unsigned int i = 1; i <= tree[v].size(); ++i) {
            if (i != tree[v].size()) {
                unsigned int current = tree[v][i];
                unsigned int previous = tree[v][i - 1];
                while (i < tree[v].size()
                    && input[tree[current].indexOfParentEdge]
                        == input[tree[previous].indexOfParentEdge]
                ) {
                    similarKids.push_back(current);
                    ++i;
                    previous = current;
                    if (i != tree[v].size()) {
                        current = tree[v][i];
                    }
                }
            }
            if (similarKids.size() != 1) {
                unsigned int newNodeIndex = tree.splitEdge(v, firstKidIndex, 1);
                auto &newNode = tree[newNodeIndex];
                for (unsigned int j = 1; j < similarKids.size(); ++j) {
                    auto &currentChild = tree[similarKids[j]];
                    currentChild.parent = newNodeIndex;
                    ++currentChild.indexOfParentEdge;
                    newNode.push_back(similarKids[j]);
                }
                if (newNode.size()
                    && tree[newNode[0]].lengthOfEdge(tree) == 0
                ) {
                    newNode.leaf = tree[newNode[0]].leaf;
                    tree.deleteUselessNode(newNode[0], 0, newNode.leaf);
                    newNode.deleteFirstChild();
                }
                myNewChildren.push_back(newNodeIndex);

                tree.checkNode(tree[newNodeIndex]);
            } else {
                myNewChildren.push_back(similarKids.back());
            }
            if (i != tree[v].size()) {
                similarKids.clear();
                similarKids.push_back(tree[v][i]);
                firstKidIndex = i;
            }
        }
    }
    tree[v].renewChildren(myNewChildren);
    if (tree[v].size() == 1 && v != tree.root && tree[v].leaf == -1) {
        tree.deleteUselessNode(v, inParentIndex, leaf);
    }
    if (tree[v].leaf != -1) {
        leaf = tree[v].leaf;
    }
    return leaf;
}
开发者ID:thefacetakt,项目名称:mipt-3sem-algo-tasks,代码行数:81,代码来源:farach.cpp


注:本文中的SuffixTree::splitEdge方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。