当前位置: 首页>>代码示例>>C++>>正文


C++ SuffixTree::deleteUselessNode方法代码示例

本文整理汇总了C++中SuffixTree::deleteUselessNode方法的典型用法代码示例。如果您正苦于以下问题:C++ SuffixTree::deleteUselessNode方法的具体用法?C++ SuffixTree::deleteUselessNode怎么用?C++ SuffixTree::deleteUselessNode使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SuffixTree的用法示例。


在下文中一共展示了SuffixTree::deleteUselessNode方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: cleanTreeDfs

int cleanTreeDfs(unsigned int v, unsigned int parent, SuffixTree &tree) {
    int leaf = tree[v].leaf;
    for (unsigned int i = 0; i < tree[v].size(); ++i) {
        unsigned int u = tree[v][i];
        int newLeaf = cleanTreeDfs(u, i, tree);
        if (leaf == -1) {
            leaf = newLeaf;
        }
    }
    unsigned int freeCell = 0;
    for (unsigned int i = 0; i < tree[v].size(); ++i) {
        if (tree[v][i] != -1) {
            tree[v][freeCell] = tree[v][i];
            ++freeCell;
        }
    }
    tree[v].resize(freeCell);
    if (tree[v].size() <= 1 && tree[v].leaf == -1 && v != tree.root) {
        tree.deleteUselessNode(v, parent, leaf);
    }
    return leaf;
}
开发者ID:thefacetakt,项目名称:mipt-3sem-algo-tasks,代码行数:22,代码来源:farach.cpp

示例2: decompressDfs

int decompressDfs(unsigned int v, unsigned int inParentIndex, SuffixTree &tree,
    const vector <int> &input, unsigned int depth
) {
    int leaf = -1;
    unsigned int oldDepth = tree[v].depth;
    tree[v].depth = depth;

    for (unsigned int i = 0; i < tree[v].size(); ++i) {
        unsigned int u = tree[v][i];
        int newLeaf = decompressDfs(u, i, tree, input,
            depth + tree[u].lengthOfEdge(tree, oldDepth) * 2
            - (tree[u].lastIndex(tree, oldDepth) == input.size() / 2 + 1)
        );
        if (leaf == -1) {
            leaf = newLeaf;
        }
    }
    tree[v].indexOfParentEdge *= 2;
    if (tree[v].leaf != -1) {
        tree[v].leaf = min(tree[v].leaf * 2, static_cast<int>(input.size()));
    }

    vector <unsigned int> myNewChildren;
    if (tree[v].size()) {
        vector <unsigned int> similarKids;
        unsigned int firstKidIndex = 0;
        similarKids.push_back(tree[v][0]);
        for (unsigned int i = 1; i <= tree[v].size(); ++i) {
            if (i != tree[v].size()) {
                unsigned int current = tree[v][i];
                unsigned int previous = tree[v][i - 1];
                while (i < tree[v].size()
                    && input[tree[current].indexOfParentEdge]
                        == input[tree[previous].indexOfParentEdge]
                ) {
                    similarKids.push_back(current);
                    ++i;
                    previous = current;
                    if (i != tree[v].size()) {
                        current = tree[v][i];
                    }
                }
            }
            if (similarKids.size() != 1) {
                unsigned int newNodeIndex = tree.splitEdge(v, firstKidIndex, 1);
                auto &newNode = tree[newNodeIndex];
                for (unsigned int j = 1; j < similarKids.size(); ++j) {
                    auto &currentChild = tree[similarKids[j]];
                    currentChild.parent = newNodeIndex;
                    ++currentChild.indexOfParentEdge;
                    newNode.push_back(similarKids[j]);
                }
                if (newNode.size()
                    && tree[newNode[0]].lengthOfEdge(tree) == 0
                ) {
                    newNode.leaf = tree[newNode[0]].leaf;
                    tree.deleteUselessNode(newNode[0], 0, newNode.leaf);
                    newNode.deleteFirstChild();
                }
                myNewChildren.push_back(newNodeIndex);

                tree.checkNode(tree[newNodeIndex]);
            } else {
                myNewChildren.push_back(similarKids.back());
            }
            if (i != tree[v].size()) {
                similarKids.clear();
                similarKids.push_back(tree[v][i]);
                firstKidIndex = i;
            }
        }
    }
    tree[v].renewChildren(myNewChildren);
    if (tree[v].size() == 1 && v != tree.root && tree[v].leaf == -1) {
        tree.deleteUselessNode(v, inParentIndex, leaf);
    }
    if (tree[v].leaf != -1) {
        leaf = tree[v].leaf;
    }
    return leaf;
}
开发者ID:thefacetakt,项目名称:mipt-3sem-algo-tasks,代码行数:81,代码来源:farach.cpp


注:本文中的SuffixTree::deleteUselessNode方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。