本文整理汇总了C++中StuntDouble类的典型用法代码示例。如果您正苦于以下问题:C++ StuntDouble类的具体用法?C++ StuntDouble怎么用?C++ StuntDouble使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StuntDouble类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: moveCom
void Molecule::moveCom(const Vetor3d& delta) {
StuntDouble* sd;
std::vector<StuntDouble*>::iterator i;
for (sd = beginIntegrableObject(i); sd != NULL; sd = nextIntegrableObject(i)){
s->setPos(sd->getPos() + delta);
}
}
示例2: newOrigin
Vector3d DensityPlot::calcNewOrigin() {
int i;
Vector3d newOrigin(0.0);
RealType totalMass = 0.0;
for (StuntDouble* sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
RealType mass = sd->getMass();
totalMass += mass;
newOrigin += sd->getPos() * mass;
}
newOrigin /= totalMass;
return newOrigin;
}
示例3: moveB
void NVE::moveB(){
SimInfo::MoleculeIterator i;
Molecule::IntegrableObjectIterator j;
Molecule* mol;
StuntDouble* sd;
Vector3d vel;
Vector3d frc;
Vector3d Tb;
Vector3d ji;
RealType mass;
for (mol = info_->beginMolecule(i); mol != NULL;
mol = info_->nextMolecule(i)) {
for (sd = mol->beginIntegrableObject(j); sd != NULL;
sd = mol->nextIntegrableObject(j)) {
vel = sd->getVel();
frc = sd->getFrc();
mass = sd->getMass();
// velocity half step
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc;
sd->setVel(vel);
if (sd->isDirectional()){
// get and convert the torque to body frame
Tb = sd->lab2Body(sd->getTrq());
// get the angular momentum, and propagate a half step
ji = sd->getJ();
ji += (dt2 * PhysicalConstants::energyConvert) * Tb;
sd->setJ(ji);
}
}
}
flucQ_->moveB();
rattle_->constraintB();
}
示例4: getComVel
Vector3d Molecule::getComVel() {
StuntDouble* sd;
std::vector<StuntDouble*>::iterator i;
Vector3d velCom;
double totalMass = 0;
double mass;
for (sd = beginIntegrableObject(i); sd != NULL; sd = nextIntegrableObject(i)){
mass = sd->getMass();
totalMass += mass;
velCom += sd->getVel() * mass;
}
velCom /= totalMass;
return velCom;
}
示例5: hmat_
void RCorrFuncZ::computeFrame(int istep) {
hmat_ = currentSnapshot_->getHmat();
halfBoxZ_ = hmat_(2,2) / 2.0;
StuntDouble* sd;
int isd1, isd2;
unsigned int index;
if (evaluator1_.isDynamic()) {
seleMan1_.setSelectionSet(evaluator1_.evaluate());
}
if (uniqueSelections_ && evaluator2_.isDynamic()) {
seleMan2_.setSelectionSet(evaluator2_.evaluate());
}
for (sd = seleMan1_.beginSelected(isd1); sd != NULL;
sd = seleMan1_.nextSelected(isd1)) {
index = computeProperty1(istep, sd);
if (index == sele1ToIndex_[istep].size()) {
sele1ToIndex_[istep].push_back(sd->getGlobalIndex());
} else {
sele1ToIndex_[istep].resize(index+1);
sele1ToIndex_[istep][index] = sd->getGlobalIndex();
}
}
if (uniqueSelections_) {
for (sd = seleMan2_.beginSelected(isd2); sd != NULL;
sd = seleMan2_.nextSelected(isd2)) {
index = computeProperty1(istep, sd);
if (index == sele2ToIndex_[istep].size()) {
sele2ToIndex_[istep].push_back(sd->getGlobalIndex());
} else {
sele2ToIndex_[istep].resize(index+1);
sele2ToIndex_[istep][index] = sd->getGlobalIndex();
}
}
}
}
示例6: StaticAnalyser
PotDiff::PotDiff(SimInfo* info, const std::string& filename,
const std::string& sele)
: StaticAnalyser(info, filename), selectionScript_(sele),
seleMan_(info), evaluator_(info) {
StuntDouble* sd;
int i;
setOutputName(getPrefix(filename) + ".potDiff");
// The PotDiff is computed by negating the charge on the atom type
// using fluctuating charge values. If we don't have any
// fluctuating charges in the simulation, we need to expand
// storage to hold them.
int storageLayout = info_->getStorageLayout();
storageLayout |= DataStorage::dslFlucQPosition;
storageLayout |= DataStorage::dslFlucQVelocity;
storageLayout |= DataStorage::dslFlucQForce;
info_->setStorageLayout(storageLayout);
info_->setSnapshotManager(new SimSnapshotManager(info_, storageLayout));
// now we have to figure out which AtomTypes to convert to fluctuating
// charges
evaluator_.loadScriptString(sele);
seleMan_.setSelectionSet(evaluator_.evaluate());
for (sd = seleMan_.beginSelected(i); sd != NULL;
sd = seleMan_.nextSelected(i)) {
AtomType* at = static_cast<Atom*>(sd)->getAtomType();
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(at);
if (fqa.isFluctuatingCharge()) {
selectionWasFlucQ_.push_back(true);
} else {
selectionWasFlucQ_.push_back(false);
// make a fictitious fluctuating charge with an unphysical
// charge mass and slaterN, but we need to zero out the
// electronegativity and hardness to remove the self
// contribution:
fqa.makeFluctuatingCharge(1.0e9, 0.0, 0.0, 1);
sd->setFlucQPos(0.0);
}
}
info_->getSnapshotManager()->advance();
}
示例7: process
void PotDiff::process() {
Molecule* mol;
RigidBody* rb;
SimInfo::MoleculeIterator mi;
Molecule::RigidBodyIterator rbIter;
StuntDouble* sd;
int j;
diff_.clear();
DumpReader reader(info_, dumpFilename_);
int nFrames = reader.getNFrames();
// We'll need the force manager to compute the potential
ForceManager* forceMan = new ForceManager(info_);
// We'll need thermo to report the potential
Thermo* thermo = new Thermo(info_);
for (int i = 0; i < nFrames; i += step_) {
reader.readFrame(i);
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
for (mol = info_->beginMolecule(mi); mol != NULL;
mol = info_->nextMolecule(mi)) {
//change the positions of atoms which belong to the rigidbodies
for (rb = mol->beginRigidBody(rbIter); rb != NULL;
rb = mol->nextRigidBody(rbIter)) {
rb->updateAtoms();
}
}
for (sd = seleMan_.beginSelected(j); sd != NULL;
sd = seleMan_.nextSelected(j)) {
if (!selectionWasFlucQ_[j]) {
sd->setFlucQPos(0.0);
}
}
forceMan->calcForces();
RealType pot1 = thermo->getPotential();
if (evaluator_.isDynamic()) {
seleMan_.setSelectionSet(evaluator_.evaluate());
}
for (sd = seleMan_.beginSelected(j); sd != NULL;
sd = seleMan_.nextSelected(j)) {
AtomType* at = static_cast<Atom*>(sd)->getAtomType();
FixedChargeAdapter fca = FixedChargeAdapter(at);
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(at);
RealType charge = 0.0;
if (fca.isFixedCharge()) charge += fca.getCharge();
if (fqa.isFluctuatingCharge()) charge += sd->getFlucQPos();
sd->setFlucQPos(-charge);
}
currentSnapshot_->clearDerivedProperties();
forceMan->calcForces();
RealType pot2 = thermo->getPotential();
RealType diff = pot2-pot1;
data_.add(diff);
diff_.push_back(diff);
times_.push_back(currentSnapshot_->getTime());
info_->getSnapshotManager()->advance();
}
writeDiff();
}
示例8: moveB
void NPT::moveB(void) {
SimInfo::MoleculeIterator i;
Molecule::IntegrableObjectIterator j;
Molecule* mol;
StuntDouble* sd;
int index;
Vector3d Tb;
Vector3d ji;
Vector3d sc;
Vector3d vel;
Vector3d frc;
RealType mass;
thermostat = snap->getThermostat();
RealType oldChi = thermostat.first;
RealType prevChi;
loadEta();
//save velocity and angular momentum
index = 0;
for (mol = info_->beginMolecule(i); mol != NULL;
mol = info_->nextMolecule(i)) {
for (sd = mol->beginIntegrableObject(j); sd != NULL;
sd = mol->nextIntegrableObject(j)) {
oldVel[index] = sd->getVel();
if (sd->isDirectional())
oldJi[index] = sd->getJ();
++index;
}
}
// do the iteration:
instaVol =thermo.getVolume();
for(int k = 0; k < maxIterNum_; k++) {
instaTemp =thermo.getTemperature();
instaPress =thermo.getPressure();
// evolve chi another half step using the temperature at t + dt/2
prevChi = thermostat.first;
thermostat.first = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2;
//evolve eta
this->evolveEtaB();
this->calcVelScale();
index = 0;
for (mol = info_->beginMolecule(i); mol != NULL;
mol = info_->nextMolecule(i)) {
for (sd = mol->beginIntegrableObject(j); sd != NULL;
sd = mol->nextIntegrableObject(j)) {
frc = sd->getFrc();
mass = sd->getMass();
getVelScaleB(sc, index);
// velocity half step
vel = oldVel[index]
+ dt2*PhysicalConstants::energyConvert/mass* frc
- dt2*sc;
sd->setVel(vel);
if (sd->isDirectional()) {
// get and convert the torque to body frame
Tb = sd->lab2Body(sd->getTrq());
ji = oldJi[index]
+ dt2*PhysicalConstants::energyConvert*Tb
- dt2*thermostat.first*oldJi[index];
sd->setJ(ji);
}
++index;
}
}
rattle_->constraintB();
if ((fabs(prevChi - thermostat.first) <= chiTolerance) &&
this->etaConverged())
break;
}
//calculate integral of chidt
thermostat.second += dt2 * thermostat.first;
snap->setThermostat(thermostat);
flucQ_->moveB();
saveEta();
}
示例9: moveA
void NPT::moveA() {
SimInfo::MoleculeIterator i;
Molecule::IntegrableObjectIterator j;
Molecule* mol;
StuntDouble* sd;
Vector3d Tb, ji;
RealType mass;
Vector3d vel;
Vector3d pos;
Vector3d frc;
Vector3d sc;
int index;
thermostat = snap->getThermostat();
loadEta();
instaTemp =thermo.getTemperature();
press = thermo.getPressureTensor();
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0;
instaVol =thermo.getVolume();
Vector3d COM = thermo.getCom();
//evolve velocity half step
calcVelScale();
for (mol = info_->beginMolecule(i); mol != NULL;
mol = info_->nextMolecule(i)) {
for (sd = mol->beginIntegrableObject(j); sd != NULL;
sd = mol->nextIntegrableObject(j)) {
vel = sd->getVel();
frc = sd->getFrc();
mass = sd->getMass();
getVelScaleA(sc, vel);
// velocity half step (use chi from previous step here):
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc;
sd->setVel(vel);
if (sd->isDirectional()) {
// get and convert the torque to body frame
Tb = sd->lab2Body(sd->getTrq());
// get the angular momentum, and propagate a half step
ji = sd->getJ();
ji += dt2*PhysicalConstants::energyConvert * Tb
- dt2*thermostat.first* ji;
rotAlgo_->rotate(sd, ji, dt);
sd->setJ(ji);
}
}
}
// evolve chi and eta half step
thermostat.first += dt2 * (instaTemp / targetTemp - 1.0) / tt2;
evolveEtaA();
//calculate the integral of chidt
thermostat.second += dt2 * thermostat.first;
flucQ_->moveA();
index = 0;
for (mol = info_->beginMolecule(i); mol != NULL;
mol = info_->nextMolecule(i)) {
for (sd = mol->beginIntegrableObject(j); sd != NULL;
sd = mol->nextIntegrableObject(j)) {
oldPos[index++] = sd->getPos();
}
}
//the first estimation of r(t+dt) is equal to r(t)
for(int k = 0; k < maxIterNum_; k++) {
index = 0;
for (mol = info_->beginMolecule(i); mol != NULL;
mol = info_->nextMolecule(i)) {
for (sd = mol->beginIntegrableObject(j); sd != NULL;
sd = mol->nextIntegrableObject(j)) {
vel = sd->getVel();
//.........这里部分代码省略.........
示例10: reader
void DensityPlot::process() {
Molecule* mol;
RigidBody* rb;
SimInfo::MoleculeIterator mi;
Molecule::RigidBodyIterator rbIter;
DumpReader reader(info_, dumpFilename_);
int nFrames = reader.getNFrames();
for (int i = 0; i < nFrames; i += step_) {
reader.readFrame(i);
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
for (mol = info_->beginMolecule(mi); mol != NULL;
mol = info_->nextMolecule(mi)) {
//change the positions of atoms which belong to the rigidbodies
for (rb = mol->beginRigidBody(rbIter); rb != NULL;
rb = mol->nextRigidBody(rbIter)) {
rb->updateAtoms();
}
}
if (evaluator_.isDynamic()) {
seleMan_.setSelectionSet(evaluator_.evaluate());
}
if (cmEvaluator_.isDynamic()) {
cmSeleMan_.setSelectionSet(cmEvaluator_.evaluate());
}
Vector3d origin = calcNewOrigin();
Mat3x3d hmat = currentSnapshot_->getHmat();
RealType slabVolume = deltaR_ * hmat(0, 0) * hmat(1, 1);
int k;
for (StuntDouble* sd = seleMan_.beginSelected(k); sd != NULL;
sd = seleMan_.nextSelected(k)) {
if (!sd->isAtom()) {
sprintf( painCave.errMsg,
"Can not calculate electron density if it is not atom\n");
painCave.severity = OPENMD_ERROR;
painCave.isFatal = 1;
simError();
}
Atom* atom = static_cast<Atom*>(sd);
GenericData* data = atom->getAtomType()->getPropertyByName("nelectron");
if (data == NULL) {
sprintf( painCave.errMsg, "Can not find Parameters for nelectron\n");
painCave.severity = OPENMD_ERROR;
painCave.isFatal = 1;
simError();
}
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
if (doubleData == NULL) {
sprintf( painCave.errMsg,
"Can not cast GenericData to DoubleGenericData\n");
painCave.severity = OPENMD_ERROR;
painCave.isFatal = 1;
simError();
}
RealType nelectron = doubleData->getData();
LennardJonesAdapter lja = LennardJonesAdapter(atom->getAtomType());
RealType sigma = lja.getSigma() * 0.5;
RealType sigma2 = sigma * sigma;
Vector3d pos = sd->getPos() - origin;
for (int j =0; j < nRBins_; ++j) {
Vector3d tmp(pos);
RealType zdist =j * deltaR_ - halfLen_;
tmp[2] += zdist;
if (usePeriodicBoundaryConditions_)
currentSnapshot_->wrapVector(tmp);
RealType wrappedZdist = tmp.z() + halfLen_;
if (wrappedZdist < 0.0 || wrappedZdist > len_) {
continue;
}
int which = int(wrappedZdist / deltaR_);
density_[which] += nelectron * exp(-zdist*zdist/(sigma2*2.0)) /(slabVolume* sqrt(2*NumericConstant::PI*sigma*sigma));
}
}
}
int nProcessed = nFrames /step_;
std::transform(density_.begin(), density_.end(), density_.begin(),
std::bind2nd(std::divides<RealType>(), nProcessed));
writeDensity();
}
示例11: main
int main(int argc, char* argv[]){
gengetopt_args_info args_info;
string dumpFileName;
string outFileName;
//parse the command line option
if (cmdline_parser (argc, argv, &args_info) != 0) {
exit(1) ;
}
//get the dumpfile name and meta-data file name
if (args_info.input_given){
dumpFileName = args_info.input_arg;
} else {
strcpy( painCave.errMsg,
"No input file name was specified.\n" );
painCave.isFatal = 1;
simError();
}
if (args_info.output_given){
outFileName = args_info.output_arg;
} else {
strcpy( painCave.errMsg,
"No output file name was specified.\n" );
painCave.isFatal = 1;
simError();
}
Vector3i repeat = Vector3i(args_info.repeatX_arg,
args_info.repeatY_arg,
args_info.repeatZ_arg);
Mat3x3d repeatD = Mat3x3d(0.0);
repeatD(0,0) = repeat.x();
repeatD(1,1) = repeat.y();
repeatD(2,2) = repeat.z();
Vector3d translate = Vector3d(args_info.translateX_arg,
args_info.translateY_arg,
args_info.translateZ_arg);
//parse md file and set up the system
SimCreator oldCreator;
SimInfo* oldInfo = oldCreator.createSim(dumpFileName, false);
Globals* simParams = oldInfo->getSimParams();
std::vector<Component*> components = simParams->getComponents();
std::vector<int> nMol;
for (vector<Component*>::iterator i = components.begin();
i !=components.end(); ++i) {
int nMolOld = (*i)->getNMol();
int nMolNew = nMolOld * repeat.x() * repeat.y() * repeat.z();
nMol.push_back(nMolNew);
}
createMdFile(dumpFileName, outFileName, nMol);
SimCreator newCreator;
SimInfo* newInfo = newCreator.createSim(outFileName, false);
DumpReader* dumpReader = new DumpReader(oldInfo, dumpFileName);
int nframes = dumpReader->getNFrames();
DumpWriter* writer = new DumpWriter(newInfo, outFileName);
if (writer == NULL) {
sprintf(painCave.errMsg, "error in creating DumpWriter");
painCave.isFatal = 1;
simError();
}
SimInfo::MoleculeIterator miter;
Molecule::IntegrableObjectIterator iiter;
Molecule::RigidBodyIterator rbIter;
Molecule* mol;
StuntDouble* sd;
StuntDouble* sdNew;
RigidBody* rb;
Mat3x3d oldHmat;
Mat3x3d newHmat;
Snapshot* oldSnap;
Snapshot* newSnap;
Vector3d oldPos;
Vector3d newPos;
for (int i = 0; i < nframes; i++){
cerr << "frame = " << i << "\n";
dumpReader->readFrame(i);
oldSnap = oldInfo->getSnapshotManager()->getCurrentSnapshot();
newSnap = newInfo->getSnapshotManager()->getCurrentSnapshot();
newSnap->setID( oldSnap->getID() );
newSnap->setTime( oldSnap->getTime() );
oldHmat = oldSnap->getHmat();
newHmat = repeatD*oldHmat;
newSnap->setHmat(newHmat);
newSnap->setThermostat( oldSnap->getThermostat() );
newSnap->setBarostat( oldSnap->getBarostat() );
//.........这里部分代码省略.........
示例12: find
SelectionSet DistanceFinder::find(const SelectionSet& bs, RealType distance, int frame ) {
StuntDouble * center;
Vector3d centerPos;
Snapshot* currSnapshot = info_->getSnapshotManager()->getSnapshot(frame);
SelectionSet bsResult(nObjects_);
assert(bsResult.size() == bs.size());
#ifdef IS_MPI
int mol;
int proc;
RealType data[3];
int worldRank = MPI::COMM_WORLD.Get_rank();
#endif
for (unsigned int j = 0; j < stuntdoubles_.size(); ++j) {
if (stuntdoubles_[j]->isRigidBody()) {
RigidBody* rb = static_cast<RigidBody*>(stuntdoubles_[j]);
rb->updateAtoms(frame);
}
}
SelectionSet bsTemp(nObjects_);
bsTemp = bs;
bsTemp.parallelReduce();
for (int i = bsTemp.bitsets_[STUNTDOUBLE].firstOnBit(); i != -1;
i = bsTemp.bitsets_[STUNTDOUBLE].nextOnBit(i)) {
// Now, if we own stuntdouble i, we can use the position, but in
// parallel, we'll need to let everyone else know what that
// position is!
#ifdef IS_MPI
mol = info_->getGlobalMolMembership(i);
proc = info_->getMolToProc(mol);
if (proc == worldRank) {
center = stuntdoubles_[i];
centerPos = center->getPos(frame);
data[0] = centerPos.x();
data[1] = centerPos.y();
data[2] = centerPos.z();
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc);
} else {
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc);
centerPos = Vector3d(data);
}
#else
center = stuntdoubles_[i];
centerPos = center->getPos(frame);
#endif
for (unsigned int j = 0; j < stuntdoubles_.size(); ++j) {
Vector3d r =centerPos - stuntdoubles_[j]->getPos(frame);
currSnapshot->wrapVector(r);
if (r.length() <= distance) {
bsResult.bitsets_[STUNTDOUBLE].setBitOn(j);
}
}
for (unsigned int j = 0; j < bonds_.size(); ++j) {
Vector3d loc = bonds_[j]->getAtomA()->getPos(frame);
loc += bonds_[j]->getAtomB()->getPos(frame);
loc = loc / 2.0;
Vector3d r = centerPos - loc;
currSnapshot->wrapVector(r);
if (r.length() <= distance) {
bsResult.bitsets_[BOND].setBitOn(j);
}
}
for (unsigned int j = 0; j < bends_.size(); ++j) {
Vector3d loc = bends_[j]->getAtomA()->getPos(frame);
loc += bends_[j]->getAtomB()->getPos(frame);
loc += bends_[j]->getAtomC()->getPos(frame);
loc = loc / 3.0;
Vector3d r = centerPos - loc;
currSnapshot->wrapVector(r);
if (r.length() <= distance) {
bsResult.bitsets_[BEND].setBitOn(j);
}
}
for (unsigned int j = 0; j < torsions_.size(); ++j) {
Vector3d loc = torsions_[j]->getAtomA()->getPos(frame);
loc += torsions_[j]->getAtomB()->getPos(frame);
loc += torsions_[j]->getAtomC()->getPos(frame);
loc += torsions_[j]->getAtomD()->getPos(frame);
loc = loc / 4.0;
Vector3d r = centerPos - loc;
currSnapshot->wrapVector(r);
if (r.length() <= distance) {
bsResult.bitsets_[TORSION].setBitOn(j);
}
}
for (unsigned int j = 0; j < inversions_.size(); ++j) {
Vector3d loc = inversions_[j]->getAtomA()->getPos(frame);
loc += inversions_[j]->getAtomB()->getPos(frame);
loc += inversions_[j]->getAtomC()->getPos(frame);
loc += inversions_[j]->getAtomD()->getPos(frame);
loc = loc / 4.0;
Vector3d r = centerPos - loc;
currSnapshot->wrapVector(r);
if (r.length() <= distance) {
//.........这里部分代码省略.........
示例13: reader
void BondAngleDistribution::process() {
Molecule* mol;
Atom* atom;
RigidBody* rb;
int myIndex;
SimInfo::MoleculeIterator mi;
Molecule::RigidBodyIterator rbIter;
Molecule::AtomIterator ai;
StuntDouble* sd;
Vector3d vec;
std::vector<Vector3d> bondvec;
RealType r;
int nBonds;
int i;
bool usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
DumpReader reader(info_, dumpFilename_);
int nFrames = reader.getNFrames();
frameCounter_ = 0;
nTotBonds_ = 0;
for (int istep = 0; istep < nFrames; istep += step_) {
reader.readFrame(istep);
frameCounter_++;
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
if (evaluator_.isDynamic()) {
seleMan_.setSelectionSet(evaluator_.evaluate());
}
// update the positions of atoms which belong to the rigidbodies
for (mol = info_->beginMolecule(mi); mol != NULL;
mol = info_->nextMolecule(mi)) {
for (rb = mol->beginRigidBody(rbIter); rb != NULL;
rb = mol->nextRigidBody(rbIter)) {
rb->updateAtoms();
}
}
// outer loop is over the selected StuntDoubles:
for (sd = seleMan_.beginSelected(i); sd != NULL;
sd = seleMan_.nextSelected(i)) {
myIndex = sd->getGlobalIndex();
nBonds = 0;
bondvec.clear();
// inner loop is over all other atoms in the system:
for (mol = info_->beginMolecule(mi); mol != NULL;
mol = info_->nextMolecule(mi)) {
for (atom = mol->beginAtom(ai); atom != NULL;
atom = mol->nextAtom(ai)) {
if (atom->getGlobalIndex() != myIndex) {
vec = sd->getPos() - atom->getPos();
if (usePeriodicBoundaryConditions_)
currentSnapshot_->wrapVector(vec);
// Calculate "bonds" and make a pair list
r = vec.length();
// Check to see if neighbor is in bond cutoff
if (r < rCut_) {
// Add neighbor to bond list's
bondvec.push_back(vec);
nBonds++;
nTotBonds_++;
}
}
}
for (int i = 0; i < nBonds-1; i++ ){
Vector3d vec1 = bondvec[i];
vec1.normalize();
for(int j = i+1; j < nBonds; j++){
Vector3d vec2 = bondvec[j];
vec2.normalize();
RealType theta = acos(dot(vec1,vec2))*180.0/NumericConstant::PI;
if (theta > 180.0){
theta = 360.0 - theta;
}
int whichBin = int(theta/deltaTheta_);
histogram_[whichBin] += 2;
}
}
//.........这里部分代码省略.........
示例14: main
int main(int argc, char* argv[]){
registerHydrodynamicsModels();
gengetopt_args_info args_info;
std::string dumpFileName;
std::string mdFileName;
std::string prefix;
//parse the command line option
if (cmdline_parser (argc, argv, &args_info) != 0) {
exit(1) ;
}
//get the dumpfile name and meta-data file name
if (args_info.input_given){
dumpFileName = args_info.input_arg;
} else {
strcpy( painCave.errMsg,
"No input file name was specified.\n" );
painCave.isFatal = 1;
simError();
}
if (args_info.output_given){
prefix = args_info.output_arg;
} else {
prefix = getPrefix(dumpFileName);
}
std::string outputFilename = prefix + ".diff";
//parse md file and set up the system
SimCreator creator;
SimInfo* info = creator.createSim(dumpFileName, true);
SimInfo::MoleculeIterator mi;
Molecule* mol;
Molecule::IntegrableObjectIterator ii;
StuntDouble* sd;
Mat3x3d identMat;
identMat(0,0) = 1.0;
identMat(1,1) = 1.0;
identMat(2,2) = 1.0;
Globals* simParams = info->getSimParams();
RealType temperature(0.0);
RealType viscosity(0.0);
if (simParams->haveViscosity()) {
viscosity = simParams->getViscosity();
} else {
sprintf(painCave.errMsg, "viscosity must be set\n");
painCave.isFatal = 1;
simError();
}
if (simParams->haveTargetTemp()) {
temperature = simParams->getTargetTemp();
} else {
sprintf(painCave.errMsg, "target temperature must be set\n");
painCave.isFatal = 1;
simError();
}
std::map<std::string, SDShape> uniqueStuntDoubles;
for (mol = info->beginMolecule(mi); mol != NULL;
mol = info->nextMolecule(mi)) {
for (sd = mol->beginIntegrableObject(ii); sd != NULL;
sd = mol->nextIntegrableObject(ii)) {
if (uniqueStuntDoubles.find(sd->getType()) == uniqueStuntDoubles.end()) {
sd->setPos(V3Zero);
sd->setA(identMat);
if (sd->isRigidBody()) {
RigidBody* rb = static_cast<RigidBody*>(sd);
rb->updateAtoms();
}
SDShape tmp;
tmp.shape = ShapeBuilder::createShape(sd);
tmp.sd = sd;
uniqueStuntDoubles.insert(std::map<std::string, SDShape>::value_type(sd->getType(), tmp));
}
}
}
std::map<std::string, SDShape>::iterator si;
for (si = uniqueStuntDoubles.begin(); si != uniqueStuntDoubles.end(); ++si) {
HydrodynamicsModel* model;
Shape* shape = si->second.shape;
StuntDouble* sd = si->second.sd;;
if (args_info.model_given) {
model = HydrodynamicsModelFactory::getInstance()->createHydrodynamicsModel(args_info.model_arg, sd, info);
} else if (shape->hasAnalyticalSolution()) {
model = new AnalyticalModel(sd, info);
//.........这里部分代码省略.........
示例15: com
void ContactAngle1::doFrame(int frame) {
StuntDouble* sd;
int i;
if (evaluator1_.isDynamic()) {
seleMan1_.setSelectionSet(evaluator1_.evaluate());
}
RealType mtot = 0.0;
Vector3d com(V3Zero);
RealType mass;
for (sd = seleMan1_.beginSelected(i); sd != NULL;
sd = seleMan1_.nextSelected(i)) {
mass = sd->getMass();
mtot += mass;
com += sd->getPos() * mass;
}
com /= mtot;
RealType dz = com.z() - solidZ_;
if (dz < 0.0) {
sprintf(painCave.errMsg,
"ContactAngle1: Z-center of mass of selection, %lf, was\n"
"\tlocated below the solid reference plane, %lf\n",
com.z(), solidZ_);
painCave.isFatal = 1;
painCave.severity = OPENMD_ERROR;
simError();
}
if (dz > dropletRadius_) {
values_.push_back(180.0);
} else {
RealType k = pow(2.0, -4.0/3.0) * dropletRadius_;
RealType z2 = dz*dz;
RealType z3 = z2 * dz;
RealType k2 = k*k;
RealType k3 = k2*k;
Polynomial<RealType> poly;
poly.setCoefficient(4, z3 + k3);
poly.setCoefficient(3, 8.0*z3 + 8.0*k3);
poly.setCoefficient(2, 24.0*z3 + 18.0*k3);
poly.setCoefficient(1, 32.0*z3 );
poly.setCoefficient(0, 16.0*z3 - 27.0*k3);
vector<RealType> realRoots = poly.FindRealRoots();
RealType ct;
vector<RealType>::iterator ri;
RealType maxct = -1.0;
for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
ct = *ri;
if (ct > 1.0) ct = 1.0;
if (ct < -1.0) ct = -1.0;
// use the largest magnitude of ct that it finds:
if (ct > maxct) {
maxct = ct;
}
}
values_.push_back( acos(maxct)*(180.0/M_PI) );
}
}