本文整理汇总了C++中StoreInst::getDest方法的典型用法代码示例。如果您正苦于以下问题:C++ StoreInst::getDest方法的具体用法?C++ StoreInst::getDest怎么用?C++ StoreInst::getDest使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类StoreInst
的用法示例。
在下文中一共展示了StoreInst::getDest方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: skipFuncConvert
/// Returns the callee SILFunction called at a call site, in the case
/// that the call is transparent (as in, both that the call is marked
/// with the transparent flag and that callee function is actually transparently
/// determinable from the SIL) or nullptr otherwise. This assumes that the SIL
/// is already in SSA form.
///
/// In the case that a non-null value is returned, FullArgs contains effective
/// argument operands for the callee function.
static SILFunction *getCalleeFunction(
SILFunction *F, FullApplySite AI, bool &IsThick,
SmallVectorImpl<std::pair<SILValue, ParameterConvention>> &CaptureArgs,
SmallVectorImpl<SILValue> &FullArgs, PartialApplyInst *&PartialApply) {
IsThick = false;
PartialApply = nullptr;
CaptureArgs.clear();
FullArgs.clear();
for (const auto &Arg : AI.getArguments())
FullArgs.push_back(Arg);
SILValue CalleeValue = AI.getCallee();
if (auto *LI = dyn_cast<LoadInst>(CalleeValue)) {
// Conservatively only see through alloc_box; we assume this pass is run
// immediately after SILGen
auto *PBI = dyn_cast<ProjectBoxInst>(LI->getOperand());
if (!PBI)
return nullptr;
auto *ABI = dyn_cast<AllocBoxInst>(PBI->getOperand());
if (!ABI)
return nullptr;
// Ensure there are no other uses of alloc_box than the project_box and
// retains, releases.
for (Operand *ABIUse : ABI->getUses())
if (ABIUse->getUser() != PBI &&
!isa<StrongRetainInst>(ABIUse->getUser()) &&
!isa<StrongReleaseInst>(ABIUse->getUser()))
return nullptr;
// Scan forward from the alloc box to find the first store, which
// (conservatively) must be in the same basic block as the alloc box
StoreInst *SI = nullptr;
for (auto I = SILBasicBlock::iterator(ABI), E = I->getParent()->end();
I != E; ++I) {
// If we find the load instruction first, then the load is loading from
// a non-initialized alloc; this shouldn't really happen but I'm not
// making any assumptions
if (&*I == LI)
return nullptr;
if ((SI = dyn_cast<StoreInst>(I)) && SI->getDest() == PBI) {
// We found a store that we know dominates the load; now ensure there
// are no other uses of the project_box except loads.
for (Operand *PBIUse : PBI->getUses())
if (PBIUse->getUser() != SI && !isa<LoadInst>(PBIUse->getUser()))
return nullptr;
// We can conservatively see through the store
break;
}
}
if (!SI)
return nullptr;
CalleeValue = SI->getSrc();
}
// PartialApply/ThinToThick -> ConvertFunction patterns are generated
// by @noescape closures.
//
// FIXME: We don't currently handle mismatched return types, however, this
// would be a good optimization to handle and would be as simple as inserting
// a cast.
auto skipFuncConvert = [](SILValue CalleeValue) {
// We can also allow a thin @escape to noescape conversion as such:
// %1 = function_ref @thin_closure_impl : [email protected](thin) () -> ()
// %2 = convert_function %1 :
// [email protected](thin) () -> () to [email protected](thin) @noescape () -> ()
// %3 = thin_to_thick_function %2 :
// [email protected](thin) @noescape () -> () to
// [email protected] @callee_guaranteed () -> ()
// %4 = apply %3() : [email protected] @callee_guaranteed () -> ()
if (auto *ThinToNoescapeCast = dyn_cast<ConvertFunctionInst>(CalleeValue)) {
auto FromCalleeTy =
ThinToNoescapeCast->getOperand()->getType().castTo<SILFunctionType>();
if (FromCalleeTy->getExtInfo().hasContext())
return CalleeValue;
auto ToCalleeTy = ThinToNoescapeCast->getType().castTo<SILFunctionType>();
auto EscapingCalleeTy = ToCalleeTy->getWithExtInfo(
ToCalleeTy->getExtInfo().withNoEscape(false));
if (FromCalleeTy != EscapingCalleeTy)
return CalleeValue;
return ThinToNoescapeCast->getOperand();
}
auto *CFI = dyn_cast<ConvertEscapeToNoEscapeInst>(CalleeValue);
if (!CFI)
return CalleeValue;
// TODO: Handle argument conversion. All the code in this file needs to be
// cleaned up and generalized. The argument conversion handling in
// optimizeApplyOfConvertFunctionInst should apply to any combine
// involving an apply, not just a specific pattern.
//
//.........这里部分代码省略.........
示例2: isInstructionTriviallyDead
/// \brief Removes instructions that create the callee value if they are no
/// longer necessary after inlining.
static void
cleanupCalleeValue(SILValue CalleeValue, ArrayRef<SILValue> CaptureArgs,
ArrayRef<SILValue> FullArgs) {
SmallVector<SILInstruction*, 16> InstsToDelete;
for (SILValue V : FullArgs) {
if (SILInstruction *I = dyn_cast<SILInstruction>(V))
if (I != CalleeValue.getDef() &&
isInstructionTriviallyDead(I))
InstsToDelete.push_back(I);
}
recursivelyDeleteTriviallyDeadInstructions(InstsToDelete, true);
// Handle the case where the callee of the apply is a load instruction.
if (LoadInst *LI = dyn_cast<LoadInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
SILInstruction *ABI = dyn_cast<AllocBoxInst>(LI->getOperand());
assert(ABI && LI->getOperand().getResultNumber() == 1);
// The load instruction must have no more uses left to erase it.
if (!LI->use_empty())
return;
LI->eraseFromParent();
// Look through uses of the alloc box the load is loading from to find up to
// one store and up to one strong release.
StoreInst *SI = nullptr;
StrongReleaseInst *SRI = nullptr;
for (auto UI = ABI->use_begin(), UE = ABI->use_end(); UI != UE; ++UI) {
if (SI == nullptr && isa<StoreInst>(UI.getUser())) {
SI = cast<StoreInst>(UI.getUser());
assert(SI->getDest() == SILValue(ABI, 1));
} else if (SRI == nullptr && isa<StrongReleaseInst>(UI.getUser())) {
SRI = cast<StrongReleaseInst>(UI.getUser());
assert(SRI->getOperand() == SILValue(ABI, 0));
} else
return;
}
// If we found a store, record its source and erase it.
if (SI) {
CalleeValue = SI->getSrc();
SI->eraseFromParent();
} else {
CalleeValue = SILValue();
}
// If we found a strong release, replace it with a strong release of the
// source of the store and erase it.
if (SRI) {
if (CalleeValue.isValid())
SILBuilderWithScope(SRI)
.emitStrongReleaseAndFold(SRI->getLoc(), CalleeValue);
SRI->eraseFromParent();
}
assert(ABI->use_empty());
ABI->eraseFromParent();
if (!CalleeValue.isValid())
return;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
SILValue Callee = PAI->getCallee();
if (!tryDeleteDeadClosure(PAI))
return;
CalleeValue = Callee;
}
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
SILValue Callee = TTTFI->getCallee();
if (!tryDeleteDeadClosure(TTTFI))
return;
CalleeValue = Callee;
}
if (FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
if (!FRI->use_empty())
return;
FRI->eraseFromParent();
}
}
示例3: B
/// Simplify the following two frontend patterns:
///
/// %payload_addr = init_enum_data_addr %payload_allocation
/// store %payload to %payload_addr
/// inject_enum_addr %payload_allocation, $EnumType.case
///
/// inject_enum_add %nopayload_allocation, $EnumType.case
///
/// for a concrete enum type $EnumType.case to:
///
/// %1 = enum $EnumType, $EnumType.case, %payload
/// store %1 to %payload_addr
///
/// %1 = enum $EnumType, $EnumType.case
/// store %1 to %nopayload_addr
///
/// We leave the cleaning up to mem2reg.
SILInstruction *
SILCombiner::visitInjectEnumAddrInst(InjectEnumAddrInst *IEAI) {
// Given an inject_enum_addr of a concrete type without payload, promote it to
// a store of an enum. Mem2reg/load forwarding will clean things up for us. We
// can't handle the payload case here due to the flow problems caused by the
// dependency in between the enum and its data.
assert(IEAI->getOperand().getType().isAddress() && "Must be an address");
Builder.setCurrentDebugScope(IEAI->getDebugScope());
if (IEAI->getOperand().getType().isAddressOnly(IEAI->getModule())) {
// Check for the following pattern inside the current basic block:
// inject_enum_addr %payload_allocation, $EnumType.case1
// ... no insns storing anything into %payload_allocation
// select_enum_addr %payload_allocation,
// case $EnumType.case1: %Result1,
// case case $EnumType.case2: %bResult2
// ...
//
// Replace the select_enum_addr by %Result1
auto *Term = IEAI->getParent()->getTerminator();
if (isa<CondBranchInst>(Term) || isa<SwitchValueInst>(Term)) {
auto BeforeTerm = prev(prev(IEAI->getParent()->end()));
auto *SEAI = dyn_cast<SelectEnumAddrInst>(BeforeTerm);
if (!SEAI)
return nullptr;
if (SEAI->getOperand() != IEAI->getOperand())
return nullptr;
SILBasicBlock::iterator II = IEAI->getIterator();
StoreInst *SI = nullptr;
for (;;) {
SILInstruction *CI = &*II;
if (CI == SEAI)
break;
++II;
SI = dyn_cast<StoreInst>(CI);
if (SI) {
if (SI->getDest() == IEAI->getOperand())
return nullptr;
}
// Allow all instructions inbetween, which don't have any dependency to
// the store.
if (AA->mayWriteToMemory(&*II, IEAI->getOperand()))
return nullptr;
}
auto *InjectedEnumElement = IEAI->getElement();
auto Result = SEAI->getCaseResult(InjectedEnumElement);
// Replace select_enum_addr by the result
replaceInstUsesWith(*SEAI, Result.getDef());
return nullptr;
}
// Check for the following pattern inside the current basic block:
// inject_enum_addr %payload_allocation, $EnumType.case1
// ... no insns storing anything into %payload_allocation
// switch_enum_addr %payload_allocation,
// case $EnumType.case1: %bbX,
// case case $EnumType.case2: %bbY
// ...
//
// Replace the switch_enum_addr by select_enum_addr, switch_value.
if (auto *SEI = dyn_cast<SwitchEnumAddrInst>(Term)) {
if (SEI->getOperand() != IEAI->getOperand())
return nullptr;
SILBasicBlock::iterator II = IEAI->getIterator();
StoreInst *SI = nullptr;
for (;;) {
SILInstruction *CI = &*II;
if (CI == SEI)
break;
++II;
SI = dyn_cast<StoreInst>(CI);
if (SI) {
if (SI->getDest() == IEAI->getOperand())
return nullptr;
}
// Allow all instructions inbetween, which don't have any dependency to
//.........这里部分代码省略.........
示例4: assert
/// \brief Returns the callee SILFunction called at a call site, in the case
/// that the call is transparent (as in, both that the call is marked
/// with the transparent flag and that callee function is actually transparently
/// determinable from the SIL) or nullptr otherwise. This assumes that the SIL
/// is already in SSA form.
///
/// In the case that a non-null value is returned, FullArgs contains effective
/// argument operands for the callee function.
static SILFunction *
getCalleeFunction(FullApplySite AI, bool &IsThick,
SmallVectorImpl<SILValue>& CaptureArgs,
SmallVectorImpl<SILValue>& FullArgs,
PartialApplyInst *&PartialApply,
SILModule::LinkingMode Mode) {
IsThick = false;
PartialApply = nullptr;
CaptureArgs.clear();
FullArgs.clear();
for (const auto &Arg : AI.getArguments())
FullArgs.push_back(Arg);
SILValue CalleeValue = AI.getCallee();
if (LoadInst *LI = dyn_cast<LoadInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
// Conservatively only see through alloc_box; we assume this pass is run
// immediately after SILGen
SILInstruction *ABI = dyn_cast<AllocBoxInst>(LI->getOperand());
if (!ABI)
return nullptr;
assert(LI->getOperand().getResultNumber() == 1);
// Scan forward from the alloc box to find the first store, which
// (conservatively) must be in the same basic block as the alloc box
StoreInst *SI = nullptr;
for (auto I = SILBasicBlock::iterator(ABI), E = I->getParent()->end();
I != E; ++I) {
// If we find the load instruction first, then the load is loading from
// a non-initialized alloc; this shouldn't really happen but I'm not
// making any assumptions
if (static_cast<SILInstruction*>(I) == LI)
return nullptr;
if ((SI = dyn_cast<StoreInst>(I)) && SI->getDest().getDef() == ABI) {
// We found a store that we know dominates the load; now ensure there
// are no other uses of the alloc other than loads, retains, releases
// and dealloc stacks
for (auto UI = ABI->use_begin(), UE = ABI->use_end(); UI != UE;
++UI)
if (UI.getUser() != SI && !isa<LoadInst>(UI.getUser()) &&
!isa<StrongRetainInst>(UI.getUser()) &&
!isa<StrongReleaseInst>(UI.getUser()))
return nullptr;
// We can conservatively see through the store
break;
}
}
if (!SI)
return nullptr;
CalleeValue = SI->getSrc();
}
// We are allowed to see through exactly one "partial apply" instruction or
// one "thin to thick function" instructions, since those are the patterns
// generated when using auto closures.
if (PartialApplyInst *PAI =
dyn_cast<PartialApplyInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
for (const auto &Arg : PAI->getArguments()) {
CaptureArgs.push_back(Arg);
FullArgs.push_back(Arg);
}
CalleeValue = PAI->getCallee();
IsThick = true;
PartialApply = PAI;
} else if (ThinToThickFunctionInst *TTTFI =
dyn_cast<ThinToThickFunctionInst>(CalleeValue)) {
assert(CalleeValue.getResultNumber() == 0);
CalleeValue = TTTFI->getOperand();
IsThick = true;
}
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(CalleeValue);
if (!FRI)
return nullptr;
SILFunction *CalleeFunction = FRI->getReferencedFunction();
switch (CalleeFunction->getRepresentation()) {
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::WitnessMethod:
break;
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
//.........这里部分代码省略.........
示例5: B
/// Simplify the following two frontend patterns:
///
/// %payload_addr = init_enum_data_addr %payload_allocation
/// store %payload to %payload_addr
/// inject_enum_addr %payload_allocation, $EnumType.case
///
/// inject_enum_add %nopayload_allocation, $EnumType.case
///
/// for a concrete enum type $EnumType.case to:
///
/// %1 = enum $EnumType, $EnumType.case, %payload
/// store %1 to %payload_addr
///
/// %1 = enum $EnumType, $EnumType.case
/// store %1 to %nopayload_addr
///
/// We leave the cleaning up to mem2reg.
SILInstruction *
SILCombiner::visitInjectEnumAddrInst(InjectEnumAddrInst *IEAI) {
// Given an inject_enum_addr of a concrete type without payload, promote it to
// a store of an enum. Mem2reg/load forwarding will clean things up for us. We
// can't handle the payload case here due to the flow problems caused by the
// dependency in between the enum and its data.
assert(IEAI->getOperand()->getType().isAddress() && "Must be an address");
Builder.setCurrentDebugScope(IEAI->getDebugScope());
if (IEAI->getOperand()->getType().isAddressOnly(IEAI->getModule())) {
// Check for the following pattern inside the current basic block:
// inject_enum_addr %payload_allocation, $EnumType.case1
// ... no insns storing anything into %payload_allocation
// select_enum_addr %payload_allocation,
// case $EnumType.case1: %Result1,
// case case $EnumType.case2: %bResult2
// ...
//
// Replace the select_enum_addr by %Result1
auto *Term = IEAI->getParent()->getTerminator();
if (isa<CondBranchInst>(Term) || isa<SwitchValueInst>(Term)) {
auto BeforeTerm = std::prev(std::prev(IEAI->getParent()->end()));
auto *SEAI = dyn_cast<SelectEnumAddrInst>(BeforeTerm);
if (!SEAI)
return nullptr;
if (SEAI->getOperand() != IEAI->getOperand())
return nullptr;
SILBasicBlock::iterator II = IEAI->getIterator();
StoreInst *SI = nullptr;
for (;;) {
SILInstruction *CI = &*II;
if (CI == SEAI)
break;
++II;
SI = dyn_cast<StoreInst>(CI);
if (SI) {
if (SI->getDest() == IEAI->getOperand())
return nullptr;
}
// Allow all instructions in between, which don't have any dependency to
// the store.
if (AA->mayWriteToMemory(&*II, IEAI->getOperand()))
return nullptr;
}
auto *InjectedEnumElement = IEAI->getElement();
auto Result = SEAI->getCaseResult(InjectedEnumElement);
// Replace select_enum_addr by the result
replaceInstUsesWith(*SEAI, Result);
return nullptr;
}
// Check for the following pattern inside the current basic block:
// inject_enum_addr %payload_allocation, $EnumType.case1
// ... no insns storing anything into %payload_allocation
// switch_enum_addr %payload_allocation,
// case $EnumType.case1: %bbX,
// case case $EnumType.case2: %bbY
// ...
//
// Replace the switch_enum_addr by select_enum_addr, switch_value.
if (auto *SEI = dyn_cast<SwitchEnumAddrInst>(Term)) {
if (SEI->getOperand() != IEAI->getOperand())
return nullptr;
SILBasicBlock::iterator II = IEAI->getIterator();
StoreInst *SI = nullptr;
for (;;) {
SILInstruction *CI = &*II;
if (CI == SEI)
break;
++II;
SI = dyn_cast<StoreInst>(CI);
if (SI) {
if (SI->getDest() == IEAI->getOperand())
return nullptr;
}
// Allow all instructions in between, which don't have any dependency to
//.........这里部分代码省略.........