本文整理汇总了C++中SparseMatrix::add_matrix_blocked方法的典型用法代码示例。如果您正苦于以下问题:C++ SparseMatrix::add_matrix_blocked方法的具体用法?C++ SparseMatrix::add_matrix_blocked怎么用?C++ SparseMatrix::add_matrix_blocked使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SparseMatrix
的用法示例。
在下文中一共展示了SparseMatrix::add_matrix_blocked方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: AssembleMatrixResNS
//.........这里部分代码省略.........
else if (2 == ivar + jvar ) kvar = dim+2; // xz
else if (3 == ivar + jvar ) kvar = dim+1; // yz
Res[ivar] += - SolVAR[jvar]*GradSolVAR[ivar][jvar]
+ IRe * ( NablaSolVAR[ivar][jvar] + NablaSolVAR[jvar][kvar] );
}
}
adept::adouble div_vel=0.;
for(int ivar=0; ivar<dim; ivar++) {
div_vel +=GradSolVAR[ivar][ivar];
}
//BEGIN redidual momentum block
for (unsigned i=0; i<nve2; i++){
for(unsigned ivar=0; ivar<dim; ivar++) {
adept::adouble Advection = 0.;
adept::adouble Laplacian = 0.;
adept::adouble phiSupg=0.;
for(unsigned jvar=0; jvar<dim; jvar++) {
unsigned kvar;
if(ivar == jvar) kvar = jvar;
else if (1 == ivar + jvar ) kvar = dim; // xy
else if (2 == ivar + jvar ) kvar = dim+2; // xz
else if (3 == ivar + jvar ) kvar = dim+1; // yz
Advection += SolVAR[jvar]*GradSolVAR[ivar][jvar]*phi[i];
Laplacian += IRe*gradphi[i*dim+jvar]*(GradSolVAR[ivar][jvar]+GradSolVAR[jvar][ivar]);
phiSupg += ( SolVAR[jvar]*gradphi[i*dim+jvar] ) * tauSupg;
aRhs[indexVAR[ivar]][i] += Res[ivar] * (-IRe * nablaphi[i*nabla_dim+jvar])* tauSupg * Weight;
aRhs[indexVAR[jvar]][i] += Res[ivar] * (-IRe * nablaphi[i*nabla_dim+kvar])* tauSupg * Weight;
}
aRhs[indexVAR[ivar]][i]+= ( - Advection - Laplacian
+ ( SolVAR[dim] - deltaSupg * div_vel) * gradphi[i*dim+ivar]
+ Res[ivar] * phiSupg ) * Weight;
}
}
//END redidual momentum block
//BEGIN continuity block
for (unsigned i=0; i<nve1; i++) {
adept::adouble MinusGradPhi1DotRes = 0.;
for(int ivar=0;ivar<dim;ivar++){
MinusGradPhi1DotRes += -gradphi1[i*dim+ivar] * Res[ivar] * tauSupg;
}
aRhs[indexVAR[dim]][i] += ( - (-div_vel) * phi1[i] + MinusGradPhi1DotRes ) * Weight;
}
//END continuity block ===========================
}
//END FLUID ASSEMBLY ============
}
}
}
//BEGIN local to global assembly
//copy adouble aRhs into double Rhs
for (unsigned i=0;i<dim;i++) {
for(int j=0; j<nve2; j++) {
Rhs[indexVAR[i]][j] = aRhs[indexVAR[i]][j].value();
}
}
for (unsigned j=0;j<nve1;j++) {
Rhs[indexVAR[dim]][j] = aRhs[indexVAR[dim]][j].value();
}
for(int i=0; i<dim+1; i++) {
myRES->add_vector_blocked(Rhs[indexVAR[i]],dofsVAR[i]);
}
//Store equations
for(int i=0; i<dim; i++) {
adeptStack.dependent(&aRhs[indexVAR[i]][0], nve2);
adeptStack.independent(&Soli[indexVAR[i]][0], nve2);
}
adeptStack.dependent(&aRhs[indexVAR[dim]][0], nve1);
adeptStack.independent(&Soli[indexVAR[dim]][0], nve1);
adeptStack.jacobian(&Jac[0]);
unsigned nveAll=(dim*nve2+nve1);
for (int inode=0;inode<nveAll;inode++){
for (int jnode=0;jnode<nveAll;jnode++){
KKloc[inode*nveAll+jnode]=-Jac[jnode*nveAll+inode];
}
}
myKK->add_matrix_blocked(KKloc,dofsAll,dofsAll);
adeptStack.clear_independents();
adeptStack.clear_dependents();
//END local to global assembly
} //end list of elements loop
myKK->close();
myRES->close();
// *************************************
end_time=clock();
AssemblyTime+=(end_time-start_time);
// ***************** END ASSEMBLY RESIDUAL + MATRIX *******************
}
示例2: AssembleBilaplaceProblem_AD
//.........这里部分代码省略.........
solu[i] = (*sol->_Sol[soluIndex])(solDof); // global extraction and local storage for the solution
solv[i] = (*sol->_Sol[solvIndex])(solDof); // global extraction and local storage for the solution
sysDof[i] = pdeSys->GetSystemDof(soluIndex, soluPdeIndex, i, iel); // global to global mapping between solution node and pdeSys dof
sysDof[nDofs + i] = pdeSys->GetSystemDof(solvIndex, solvPdeIndex, i, iel); // global to global mapping between solution node and pdeSys dof
}
// local storage of coordinates
for (unsigned i = 0; i < nDofs2; i++) {
unsigned xDof = msh->GetSolutionDof(i, iel, xType); // global to global mapping between coordinates node and coordinate dof
for (unsigned jdim = 0; jdim < dim; jdim++) {
x[jdim][i] = (*msh->_topology->_Sol[jdim])(xDof); // global extraction and local storage for the element coordinates
}
}
// start a new recording of all the operations involving adept::adouble variables
s.new_recording();
// *** Gauss point loop ***
for (unsigned ig = 0; ig < msh->_finiteElement[ielGeom][soluType]->GetGaussPointNumber(); ig++) {
// *** get gauss point weight, test function and test function partial derivatives ***
msh->_finiteElement[ielGeom][soluType]->Jacobian(x, ig, weight, phi, phi_x, phi_xx);
// evaluate the solution, the solution derivatives and the coordinates in the gauss point
adept::adouble soluGauss = 0;
vector < adept::adouble > soluGauss_x(dim, 0.);
adept::adouble solvGauss = 0;
vector < adept::adouble > solvGauss_x(dim, 0.);
vector < double > xGauss(dim, 0.);
for (unsigned i = 0; i < nDofs; i++) {
soluGauss += phi[i] * solu[i];
solvGauss += phi[i] * solv[i];
for (unsigned jdim = 0; jdim < dim; jdim++) {
soluGauss_x[jdim] += phi_x[i * dim + jdim] * solu[i];
solvGauss_x[jdim] += phi_x[i * dim + jdim] * solv[i];
xGauss[jdim] += x[jdim][i] * phi[i];
}
}
// *** phi_i loop ***
for (unsigned i = 0; i < nDofs; i++) {
adept::adouble Laplace_u = 0.;
adept::adouble Laplace_v = 0.;
for (unsigned jdim = 0; jdim < dim; jdim++) {
Laplace_u += - phi_x[i * dim + jdim] * soluGauss_x[jdim];
Laplace_v += - phi_x[i * dim + jdim] * solvGauss_x[jdim];
}
double exactSolValue = GetExactSolutionValue(xGauss);
double pi = acos(-1.);
aResv[i] += (solvGauss * phi[i] - Laplace_u) * weight;
aResu[i] += (4.*pi * pi * pi * pi * exactSolValue * phi[i] - Laplace_v) * weight;
} // end phi_i loop
} // end gauss point loop
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store
Res.resize(2 * nDofs);
for (int i = 0; i < nDofs; i++) {
Res[i] = -aResu[i].value();
Res[nDofs + i] = -aResv[i].value();
}
RES->add_vector_blocked(Res, sysDof);
Jac.resize( 4 * nDofs * nDofs );
// define the dependent variables
s.dependent(&aResu[0], nDofs);
s.dependent(&aResv[0], nDofs);
// define the independent variables
s.independent(&solu[0], nDofs);
s.independent(&solv[0], nDofs);
// get the jacobian matrix (ordered by column)
s.jacobian(&Jac[0], true);
KK->add_matrix_blocked(Jac, sysDof, sysDof);
s.clear_independents();
s.clear_dependents();
} //end element loop for each process
RES->close();
KK->close();
// ***************** END ASSEMBLY *******************
}
示例3: AssemblePoisson_AD
//.........这里部分代码省略.........
msh->_finiteElement[ielGeom][solUType]->Jacobian (crdX, ig, weight, phi, phi_x, phi_xx);
msh->_finiteElement[ielGeom][solVType]->Jacobian (crdX, ig, weight, phiV, phiV_x, phiV_xx);
adept::adouble solUig = 0; // solution U in the gauss point
vector < adept::adouble > gradSolUig (dim, 0.); // gradient of solution U in the gauss point
for (unsigned i = 0; i < nDofsU; i++) {
solUig += phi[i] * solU[i];
for (unsigned j = 0; j < dim; j++) {
gradSolUig[j] += phi_x[i * dim + j] * solU[i];
}
}
adept::adouble solVig = 0; // solution V in the gauss point
vector < adept::adouble > gradSolVig (dim, 0.); // gradient of solution U in the gauss point
for (unsigned i = 0; i < nDofsV; i++) {
solVig += phiV[i] * solV[i];
for (unsigned j = 0; j < dim; j++) {
gradSolVig[j] += phiV_x[i * dim + j] * solV[i];
}
}
double nu = 1.;
// *** phiU_i loop ***
for (unsigned i = 0; i < nDofsU; i++) {
adept::adouble LaplaceU = 0.;
for (unsigned j = 0; j < dim; j++) {
LaplaceU -= nu * phi_x[i * dim + j] * gradSolUig[j];
}
aResU[i] += (phi[i] - LaplaceU) * weight;
} // end phiU_i loop
for (unsigned i = 0; i < nDofsV; i++) {
adept::adouble LaplaceV = 0.;
for (unsigned j = 0; j < dim; j++) {
LaplaceV -= nu * phiV_x[i * dim + j] * gradSolVig[j];
}
aResV[i] += (phiV[i] * solUig - LaplaceV) * weight;
} // end phiV_i loop
} // end gauss point loop
// } // endif single element not refined or fine grid loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store them in RES
Res.resize (nDofsU + nDofsV); //resize
for (int i = 0; i < nDofsU; i++) {
Res[i] = -aResU[i].value();
}
for (int i = 0; i < nDofsV; i++) {
Res[i + nDofsU] = -aResV[i].value();
}
RES->add_vector_blocked (Res, sysDof);
//Extarct and store the Jacobian
Jac.resize ( (nDofsU + nDofsV) * (nDofsU + nDofsV));
// define the dependent variables
s.dependent (&aResU[0], nDofsU);
s.dependent (&aResV[0], nDofsV);
// define the independent variables
s.independent (&solU[0], nDofsU);
s.independent (&solV[0], nDofsV);
// get the and store jacobian matrix (row-major)
s.jacobian (&Jac[0] , true);
KK->add_matrix_blocked (Jac, sysDof, sysDof);
s.clear_independents();
s.clear_dependents();
} //end element loop for each process
RES->close();
KK->close();
// ***************** END ASSEMBLY *******************
}
示例4: AssembleBoussinesqAppoximation_AD
//.........这里部分代码省略.........
for (unsigned k = 0; k < dim; k++) {
solV_gss[k] += phiV[i] * solV[k][i];
}
for (unsigned j = 0; j < dim; j++) {
for (unsigned k = 0; k < dim; k++) {
gradSolV_gss[k][j] += phiV_x[i * dim + j] * solV[k][i];
}
}
}
adept::adouble solP_gss = 0;
for (unsigned i = 0; i < nDofsP; i++) {
solP_gss += phiP[i] * solP[i];
}
double nu = 1.;
// *** phiV_i loop ***
for (unsigned i = 0; i < nDofsV; i++) {
vector < adept::adouble > NSV(dim, 0.);
for (unsigned j = 0; j < dim; j++) {
for (unsigned k = 0; k < dim; k++) {
NSV[k] += nu * phiV_x[i * dim + j] * (gradSolV_gss[k][j] + gradSolV_gss[j][k]);
NSV[k] += phiV[i] * (solV_gss[j] * gradSolV_gss[k][j]);
}
}
for (unsigned k = 0; k < dim; k++) {
NSV[k] += -solP_gss * phiV_x[i * dim + k];
}
for (unsigned k = 0; k < dim; k++) {
aResV[k][i] += - NSV[k] * weight;
}
} // end phiV_i loop
// *** phiP_i loop ***
for (unsigned i = 0; i < nDofsP; i++) {
for (int k = 0; k < dim; k++) {
aResP[i] += - (gradSolV_gss[k][k]) * phiP[i] * weight;
}
} // end phiP_i loop
} // end gauss point loop
} // endif single element not refined or fine grid loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store them in RES
Res.resize(nDofsVP); //resize
for (int i = 0; i < nDofsV; i++) {
for (unsigned k = 0; k < dim; k++) {
Res[ i + k * nDofsV ] = -aResV[k][i].value();
}
}
for (int i = 0; i < nDofsP; i++) {
Res[ i + dim * nDofsV ] = -aResP[i].value();
}
RES->add_vector_blocked(Res, KKDof);
//Extarct and store the Jacobian
if (assembleMatrix) {
Jac.resize(nDofsVP * nDofsVP);
// define the dependent variables
for (unsigned k = 0; k < dim; k++) {
s.dependent(&aResV[k][0], nDofsV);
}
s.dependent(&aResP[0], nDofsP);
// define the independent variables
for (unsigned k = 0; k < dim; k++) {
s.independent(&solV[k][0], nDofsV);
}
s.independent(&solP[0], nDofsP);
// get the and store jacobian matrix (row-major)
s.jacobian(&Jac[0] , true);
KK->add_matrix_blocked(Jac, KKDof, KKDof);
s.clear_independents();
s.clear_dependents();
}
} //end element loop for each process
RES->close();
if (assembleMatrix) KK->close();
// ***************** END ASSEMBLY *******************
}
示例5: AssembleBoussinesqAppoximation
//.........这里部分代码省略.........
}
}
//END phiT_i loop
//BEGIN phiV_i loop: Momentum balance
for(unsigned i = 0; i < nDofsV; i++) {
for(unsigned k = 0; k < dim; k++) {
unsigned irow = nDofsT + k * nDofsV + i;
for(unsigned l = 0; l < dim; l++) {
Res[irow] += -sqrt(Pr / Ra) * phiV_x[i * dim + l] * (gradSolV_gss[k][l] + gradSolV_gss[l][k]) * weight;
Res[irow] += -phiV[i] * solV_gss[l] * gradSolV_gss[k][l] * weight;
}
Res[irow] += solP_gss * phiV_x[i * dim + k] * weight;
if(k == 1) {
Res[irow] += beta * solT_gss * phiV[i] * weight;
}
if(assembleMatrix) {
unsigned irowMat = nDofsTVP * irow;
for(unsigned l = 0; l < dim; l++) {
for(unsigned j = 0; j < nDofsV; j++) {
unsigned jcol1 = (nDofsT + k * nDofsV + j);
unsigned jcol2 = (nDofsT + l * nDofsV + j);
Jac[ irowMat + jcol1] += sqrt(Pr / Ra) * phiV_x[i * dim + l] * phiV_x[j * dim + l] * weight;
Jac[ irowMat + jcol2] += sqrt(Pr / Ra) * phiV_x[i * dim + l] * phiV_x[j * dim + k] * weight;
Jac[ irowMat + jcol1] += phiV[i] * solV_gss[l] * phiV_x[j * dim + l] * weight;
Jac[ irowMat + jcol2] += phiV[i] * phiV[j] * gradSolV_gss[k][l] * weight;
}
}
for(unsigned j = 0; j < nDofsP; j++) {
unsigned jcol = (nDofsT + dim * nDofsV) + j;
Jac[ irowMat + jcol] += - phiV_x[i * dim + k] * phiP[j] * weight;
}
if(k == 1) {
for(unsigned j = 0; j < nDofsT; j++) {
Jac[ irowMat + j ] += -beta * phiV[i] * phiT[j] * weight;
}
}
}
}
}
//END phiV_i loop
//BEGIN phiP_i loop: mass balance
for(unsigned i = 0; i < nDofsP; i++) {
unsigned irow = nDofsT + dim * nDofsV + i;
for(int k = 0; k < dim; k++) {
Res[irow] += (gradSolV_gss[k][k]) * phiP[i] * weight;
if(assembleMatrix) {
unsigned irowMat = nDofsTVP * irow;
for(unsigned j = 0; j < nDofsV; j++) {
unsigned jcol = (nDofsT + k * nDofsV + j);
Jac[ irowMat + jcol ] += - phiP[i] * phiV_x[j * dim + k] * weight;
}
}
}
}
//END phiP_i loop
}
//END Gauss point loop
//BEGIN local to global Matrix/Vector assembly
RES->add_vector_blocked(Res, sysDof);
if(assembleMatrix) {
KK->add_matrix_blocked(Jac, sysDof, sysDof);
}
//END local to global Matrix/Vector assembly
}
//END element loop
RES->close();
if(assembleMatrix) {
KK->close();
}
// ***************** END ASSEMBLY *******************
}
示例6: ETD
//.........这里部分代码省略.........
Res[counter] = aResh[k][i].value();
counter++;
}
for(int i = 0; i < nDofv; i++) {
Res[counter] = aResv[k][i].value();
counter++;
}
for(int i = 0; i < nDofHT; i++) {
Res[counter] = aResHT[k][i].value();
counter++;
}
}
RES->add_vector_blocked(Res, l2GMap);
for(unsigned k = 0; k < NLayers; k++) {
// define the dependent variables
s.dependent(&aResh[k][0], nDofh);
s.dependent(&aResv[k][0], nDofv);
s.dependent(&aResHT[k][0], nDofHT);
// define the independent variables
s.independent(&solh[k][0], nDofh);
s.independent(&solv[k][0], nDofv);
s.independent(&solHT[k][0], nDofHT);
}
// get the jacobian matrix (ordered by row major )
vector < double > Jac(NLayers * nDofs * NLayers * nDofs);
s.jacobian(&Jac[0], true);
//store K in the global matrix KK
KK->add_matrix_blocked(Jac, l2GMap, l2GMap);
s.clear_independents();
s.clear_dependents();
}
RES->close();
KK->close();
// PetscViewer viewer;
// PetscViewerDrawOpen(PETSC_COMM_WORLD,NULL,NULL,0,0,900,900,&viewer);
// PetscObjectSetName((PetscObject)viewer,"FSI matrix");
// PetscViewerPushFormat(viewer,PETSC_VIEWER_DRAW_LG);
// MatView((static_cast<PetscMatrix*>(KK))->mat(),viewer);
// double a;
// std::cin>>a;
//
// abort();
MFN mfn;
Mat A = (static_cast<PetscMatrix*>(KK))->mat();
FN f, f1, f2, f3 , f4;
std::cout << "dt = " << dt << " dx = "<< dx << " maxWaveSpeed = "<<maxWaveSpeed << std::endl;
//dt = 100.;
Vec v = (static_cast< PetscVector* >(RES))->vec();
Vec y = (static_cast< PetscVector* >(EPS))->vec();
示例7: AssemblePoissonMatrixandRhs
//.........这里部分代码省略.........
const unsigned felt = mymsh->GetElementFaceType(iel, jface);
for (unsigned i = 0; i < nve; i++) {
unsigned ilocal = mymsh->GetLocalFaceVertexIndex(iel, jface, i);
unsigned inode_coord_metis = mymsh->GetSolutionDof(ilocal, iel, 2);
for (unsigned ivar = 0; ivar < dim; ivar++) {
coordinates[ivar][i] = (*mymsh->_topology->_Sol[ivar])(inode_coord_metis);
}
}
if (felt != 6) {
for (unsigned igs = 0; igs < mymsh->_finiteElement[felt][order_ind]->GetGaussPointNumber(); igs++) {
mymsh->_finiteElement[felt][order_ind]->JacobianSur(coordinates, igs, weight, phi, gradphi, normal);
xyzt.assign(4, 0.);
for (unsigned i = 0; i < nve; i++) {
for (unsigned ivar = 0; ivar < dim; ivar++) {
xyzt[ivar] += coordinates[ivar][i] * phi[i];
}
}
// *** phi_i loop ***
for (unsigned i = 0; i < nve; i++) {
double surfterm_g = (*bdcfunc)(&xyzt[0]);
double bdintegral = phi[i] * surfterm_g * weight;
unsigned int ilocalnode = mymsh->GetLocalFaceVertexIndex(iel, jface, i);
F[ilocalnode] += bdintegral;
}
}
}
else { // 1D : the side elems are points and does not still exist the point elem
// in 1D it is only one point
xyzt[0] = coordinates[0][0];
xyzt[1] = 0.;
xyzt[2] = 0.;
xyzt[3] = 0.;
double bdintegral = (*bdcfunc)(&xyzt[0]);
unsigned int ilocalnode = mymsh->GetLocalFaceVertexIndex(iel, jface, 0);
F[ilocalnode] += bdintegral;
}
}
}
}
}
else {
double tau = 0.;
std::vector< double > xx(dim, 0.);
vector < double > normal(dim, 0);
// loop on faces
for (unsigned jface = 0; jface < mymsh->GetElementFaceNumber(iel); jface++) {
// look for boundary faces
if (myel->GetFaceElementIndex(iel, jface) < 0) {
unsigned int faceIndex = myel->GetBoundaryIndex(iel, jface);
if (!ml_sol->GetBdcFunction()(xx, "Sol", tau, faceIndex, 0.) && tau != 0.) {
unsigned nve = mymsh->GetElementFaceDofNumber(iel, jface, order_ind);
const unsigned felt = mymsh->GetElementFaceType(iel, jface);
for (unsigned i = 0; i < nve; i++) {
unsigned int ilocal = mymsh->GetLocalFaceVertexIndex(iel, jface, i);
unsigned inode = mymsh->GetSolutionDof(ilocal, iel, 2);
for (unsigned idim = 0; idim < dim; idim++) {
coordinates[idim][i] = (*mymsh->_topology->_Sol[idim])(inode);
}
}
for (unsigned igs = 0; igs < mymsh->_finiteElement[felt][order_ind]->GetGaussPointNumber(); igs++) {
mymsh->_finiteElement[felt][order_ind]->JacobianSur(coordinates, igs, weight, phi, gradphi, normal);
// *** phi_i loop ***
for (unsigned i = 0; i < nve; i++) {
double value = phi[i] * tau * weight;
unsigned int ilocal = mymsh->GetLocalFaceVertexIndex(iel, jface, i);
F[ilocal] += value;
}
}
}
}
}
}
//--------------------------------------------------------------------------------------------------------
//Sum the local matrices/vectors into the global Matrix/vector
myRES->add_vector_blocked(F, KK_dof);
myKK->add_matrix_blocked(B, KK_dof, KK_dof);
} //end list of elements loop for each subdomain
myRES->close();
myKK->close();
// ***************** END ASSEMBLY *******************
}
示例8: AssembleNonlinearProblem
//.........这里部分代码省略.........
}
Res.resize(nDofs); //resize
std::fill(Res.begin(), Res.end(), 0); //set Res to zero
if (assembleMatrix) {
J.resize(nDofs * nDofs); //resize
std::fill(J.begin(), J.end(), 0); //set K to zero
}
// local storage of global mapping and solution
for (unsigned i = 0; i < nDofs; i++) {
unsigned iNode = el->GetMeshDof(kel, i, soluType); // local to global solution node
unsigned solDof = msh->GetMetisDof(iNode, soluType); // global to global mapping between solution node and solution dof
solu[i] = (*sol->_Sol[soluIndex])(solDof); // global extraction and local storage for the solution
KKDof[i] = pdeSys->GetKKDof(soluIndex, soluPdeIndex, iNode); // global to global mapping between solution node and pdeSys dof
}
// local storage of coordinates
for (unsigned i = 0; i < nDofs2; i++) {
unsigned iNode = el->GetMeshDof(kel, i, xType); // local to global coordinates node
unsigned xDof = msh->GetMetisDof(iNode, xType); // global to global mapping between coordinates node and coordinate dof
for (unsigned jdim = 0; jdim < dim; jdim++) {
x[jdim][i] = (*msh->_coordinate->_Sol[jdim])(xDof); // global extraction and local storage for the element coordinates
}
}
if (level == levelMax || !el->GetRefinedElementIndex(kel)) { // do not care about this if now (it is used for the AMR)
// *** Gauss point loop ***
for (unsigned ig = 0; ig < msh->_finiteElement[kelGeom][soluType]->GetGaussPointNumber(); ig++) {
// *** get gauss point weight, test function and test function partial derivatives ***
msh->_finiteElement[kelGeom][soluType]->Jacobian(x, ig, weight, phi, phi_x, phi_xx);
// evaluate the solution, the solution derivatives and the coordinates in the gauss point
double soluGauss = 0;
vector < double > soluGauss_x(dim, 0.);
vector < double > xGauss(dim, 0.);
for (unsigned i = 0; i < nDofs; i++) {
soluGauss += phi[i] * solu[i];
for (unsigned jdim = 0; jdim < dim; jdim++) {
soluGauss_x[jdim] += phi_x[i * dim + jdim] * solu[i];
xGauss[jdim] += x[jdim][i] * phi[i];
}
}
// *** phi_i loop ***
for (unsigned i = 0; i < nDofs; i++) {
double nonLinearTerm = 0.;
double mLaplace = 0.;
for (unsigned jdim = 0; jdim < dim; jdim++) {
mLaplace += phi_x[i * dim + jdim] * soluGauss_x[jdim];
nonLinearTerm += soluGauss * soluGauss_x[jdim] * phi[i];
}
double exactSolValue = GetExactSolutionValue(xGauss);
vector < double > exactSolGrad(dim);
GetExactSolutionGradient(xGauss , exactSolGrad);
double exactSolLaplace = GetExactSolutionLaplace(xGauss);
double f = (- exactSolLaplace + exactSolValue * (exactSolGrad[0] + exactSolGrad[1])) * phi[i] ;
Res[i] += (f - (mLaplace + nonLinearTerm)) * weight;
if (assembleMatrix) {
// *** phi_j loop ***
for (unsigned j = 0; j < nDofs; j++) {
mLaplace = 0.;
nonLinearTerm = 0.;
for (unsigned kdim = 0; kdim < dim; kdim++) {
mLaplace += (phi_x[i * dim + kdim] * phi_x[j * dim + kdim]);
nonLinearTerm += phi[i] * (phi[j] * soluGauss_x[kdim] + soluGauss * phi_x[j * dim + kdim]);
}
J[i * nDofs + j] += (mLaplace + nonLinearTerm) * weight;
} // end phi_j loop
} // endif assemble_matrix
} // end phi_i loop
} // end gauss point loop
} // endif single element not refined or fine grid loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
RES->add_vector_blocked(Res, KKDof);
if (assembleMatrix) KK->add_matrix_blocked(J, KKDof, KKDof);
} //end element loop for each process
RES->close();
if (assembleMatrix) KK->close();
// ***************** END ASSEMBLY *******************
}
示例9: AssembleWillmoreFlow_AD
//.........这里部分代码省略.........
h[0][0] = h[0][1] = h[1][0] = h[1][1] = 0.;
for (int k = 0; k < 3; k++) {
for (int u = 0; u < dim; u++) {
for (int v = 0; v < dim; v++) {
h[u][v] += solRGauss_xx[k][u][v] * N[k];
}
}
}
//adept::adouble K = cos(sol_x[0])/(a+cos(sol_x[0]));//(h[0][0]*h[1][1]-h[0][1]*h[1][0])/detg;
adept::adouble K = (h[0][0] * h[1][1] - h[0][1] * h[1][0]) / detg;
adept::adouble H_exact = 0.5 * (1. + cos(sol_x[0]) / (a + cos(sol_x[0])));
// *** phi_i loop ***
for (unsigned i = 0; i < nDofs; i++) {
for (int k = 0; k < 3; k++) {
for (int u = 0; u < dim; u++) {
adept::adouble AgIgradRgradPhi = 0;
for (int v = 0; v < dim; v++) {
AgIgradRgradPhi += A * gI[u][v].value() * solRGauss_x[k][v];
}
aResR[k][i] += AgIgradRgradPhi * phi_x[i * dim + u] * weight;
}
aResR[k][i] += 2.* A * solHGauss.value() * N[k] * phi[i] * weight;
}
for (int u = 0; u < dim; u++) {
adept::adouble AgIgradHgradPhi = 0;
for (int v = 0; v < dim; v++) {
AgIgradHgradPhi += A * gI[u][v].value() * solHGauss_x[v];
}
aResH[i] -= AgIgradHgradPhi * phi_x[i * dim + u] * weight;
}
aResH[i] += A * (-0 * (solRGauss[0] - solRGaussOld[0]) * N[0].value()
- 0 * (solRGauss[1] - solRGaussOld[1]) * N[1].value()
- 0 * (solRGauss[2] - solRGaussOld[2]) * N[2].value()
+ 2. * solHGauss * (solHGauss * solHGauss - K.value())) * phi[i] * weight;
} // end phi_i loop
} // end gauss point loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store
for (int i = 0; i < nDofs; i++) {
for (int k = 0; k < 3; k++) {
Res[ k * nDofs + i] = -aResR[k][i].value();
}
Res[ 3 * nDofs + i] = -aResH[i].value();
}
RES->add_vector_blocked(Res, sysDof);
Jac.resize((4 * nDofs) * (4 * nDofs));
// define the dependent variables
for (int k = 0; k < 3; k++) {
s.dependent(&aResR[k][0], nDofs);
}
s.dependent(&aResH[0], nDofs);
// define the independent variables
for (int k = 0; k < 3; k++) {
s.independent(&solR[k][0], nDofs);
}
s.independent(&solH[0], nDofs);
// get the jacobian matrix (ordered by row)
s.jacobian(&Jac[0], true);
KK->add_matrix_blocked(Jac, sysDof, sysDof);
s.clear_independents();
s.clear_dependents();
} //end element loop for each process
RES->close();
KK->close();
// ***************** END ASSEMBLY *******************
}
示例10: AssemblePoissonProblem_AD
//.........这里部分代码省略.........
for (int i = 0; i < dim; i++) {
x[i].resize(nDofx);
}
aRes.resize(nDofu); //resize
std::fill(aRes.begin(), aRes.end(), 0); //set aRes to zero
// local storage of global mapping and solution
for (unsigned i = 0; i < nDofu; i++) {
unsigned solDof = msh->GetSolutionDof(i, iel, soluType); // global to global mapping between solution node and solution dof
solu[i] = (*sol->_Sol[soluIndex])(solDof); // global extraction and local storage for the solution
l2GMap[i] = pdeSys->GetSystemDof(soluIndex, soluPdeIndex, i, iel); // global to global mapping between solution node and pdeSys dof
}
// local storage of coordinates
for (unsigned i = 0; i < nDofx; i++) {
unsigned xDof = msh->GetSolutionDof(i, iel, xType); // global to global mapping between coordinates node and coordinate dof
for (unsigned jdim = 0; jdim < dim; jdim++) {
x[jdim][i] = (*msh->_topology->_Sol[jdim])(xDof); // global extraction and local storage for the element coordinates
}
}
// start a new recording of all the operations involving adept::adouble variables
s.new_recording();
// *** Gauss point loop ***
for (unsigned ig = 0; ig < msh->_finiteElement[ielGeom][soluType]->GetGaussPointNumber(); ig++) {
// *** get gauss point weight, test function and test function partial derivatives ***
msh->_finiteElement[ielGeom][soluType]->Jacobian(x, ig, weight, phi, phi_x, phi_xx);
// evaluate the solution, the solution derivatives and the coordinates in the gauss point
adept::adouble solu_gss = 0;
vector < adept::adouble > gradSolu_gss(dim, 0.);
vector < double > x_gss(dim, 0.);
for (unsigned i = 0; i < nDofu; i++) {
solu_gss += phi[i] * solu[i];
for (unsigned jdim = 0; jdim < dim; jdim++) {
gradSolu_gss[jdim] += phi_x[i * dim + jdim] * solu[i];
x_gss[jdim] += x[jdim][i] * phi[i];
}
}
// *** phi_i loop ***
for (unsigned i = 0; i < nDofu; i++) {
adept::adouble laplace = 0.;
for (unsigned jdim = 0; jdim < dim; jdim++) {
laplace += phi_x[i * dim + jdim] * gradSolu_gss[jdim];
}
double srcTerm = - GetExactSolutionLaplace(x_gss);
aRes[i] += (srcTerm * phi[i] - laplace) * weight;
} // end phi_i loop
} // end gauss point loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store
Res.resize(nDofu); //resize
for (int i = 0; i < nDofu; i++) {
Res[i] = - aRes[i].value();
}
RES->add_vector_blocked(Res, l2GMap);
// define the dependent variables
s.dependent(&aRes[0], nDofu);
// define the independent variables
s.independent(&solu[0], nDofu);
// get the jacobian matrix (ordered by row major )
Jac.resize(nDofu * nDofu); //resize
s.jacobian(&Jac[0], true);
//store K in the global matrix KK
KK->add_matrix_blocked(Jac, l2GMap, l2GMap);
s.clear_independents();
s.clear_dependents();
} //end element loop for each process
RES->close();
KK->close();
// ***************** END ASSEMBLY *******************
}
示例11: AssembleBoussinesqAppoximation_AD
//.........这里部分代码省略.........
// *** phiV_i loop ***
for(unsigned i = 0; i < nDofsV; i++) {
vector < adept::adouble > NSV(dim, 0.);
vector < double > NSVold(dim, 0.);
for(unsigned j = 0; j < dim; j++) {
for(unsigned k = 0; k < dim; k++) {
NSV[k] += sqrt(Pr / Ra) * phiV_x[i * dim + j] * (gradSolV_gss[k][j] + gradSolV_gss[j][k]);
NSV[k] += phiV[i] * (solV_gss[j] * gradSolV_gss[k][j]);
NSVold[k] += sqrt(Pr / Ra) * phiV_x[i * dim + j] * (gradSolVold_gss[k][j] + gradSolVold_gss[j][k]);
NSVold[k] += phiV[i] * (solVold_gss[j] * gradSolVold_gss[k][j]);
}
}
for(unsigned k = 0; k < dim; k++) {
NSV[k] += -solP_gss * phiV_x[i * dim + k];
NSVold[k] += -solPold_gss * phiV_x[i * dim + k];
}
NSV[1] += -beta * solT_gss * phiV[i];
NSVold[1] += -beta * solTold_gss * phiV[i];
for(unsigned k = 0; k < dim; k++) {
aResV[k][i] += (- (solV_gss[k] - solVold_gss[k]) * phiV[i] / dt - 0.5 * (NSV[k] + NSVold[k])) * weight;
}
} // end phiV_i loop
// *** phiP_i loop ***
for(unsigned i = 0; i < nDofsP; i++) {
for(int k = 0; k < dim; k++) {
aResP[i] += - (gradSolV_gss[k][k]) * phiP[i] * weight;
}
} // end phiP_i loop
} // end gauss point loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store them in RES
Res.resize(nDofsTVP); //resize
for(int i = 0; i < nDofsT; i++) {
Res[i] = -aResT[i].value();
}
for(int i = 0; i < nDofsV; i++) {
for(unsigned k = 0; k < dim; k++) {
Res[ i + nDofsT + k * nDofsV ] = -aResV[k][i].value();
}
}
for(int i = 0; i < nDofsP; i++) {
Res[ i + nDofsT + dim * nDofsV ] = -aResP[i].value();
}
RES->add_vector_blocked(Res, sysDof);
//Extarct and store the Jacobian
if(assembleMatrix) {
Jac.resize(nDofsTVP * nDofsTVP);
// define the dependent variables
s.dependent(&aResT[0], nDofsT);
for(unsigned k = 0; k < dim; k++) {
s.dependent(&aResV[k][0], nDofsV);
}
s.dependent(&aResP[0], nDofsP);
// define the independent variables
s.independent(&solT[0], nDofsT);
for(unsigned k = 0; k < dim; k++) {
s.independent(&solV[k][0], nDofsV);
}
s.independent(&solP[0], nDofsP);
// get the and store jacobian matrix (row-major)
s.jacobian(&Jac[0] , true);
KK->add_matrix_blocked(Jac, sysDof, sysDof);
s.clear_independents();
s.clear_dependents();
}
} //end element loop for each process
RES->close();
if(assembleMatrix) {
KK->close();
}
// ***************** END ASSEMBLY *******************
}
示例12: AssembleBilaplaceProblem_AD
//.........这里部分代码省略.........
// *** get gauss point weight, test function and test function partial derivatives ***
msh->_finiteElement[kelGeom][soluType]->Jacobian(x,ig,weight,phi,phi_x,phi_xx);
// evaluate the solution, the solution derivatives and the coordinates in the gauss point
adept::adouble soluGauss = 0;
vector < adept::adouble > soluGauss_x(dim,0.);
adept::adouble solvGauss = 0;
vector < adept::adouble > solvGauss_x(dim,0.);
vector < double > xGauss(dim,0.);
for(unsigned i=0; i<nDofs; i++) {
soluGauss+=phi[i]*solu[i];
solvGauss+=phi[i]*solv[i];
for(unsigned jdim=0; jdim<dim; jdim++) {
soluGauss_x[jdim] += phi_x[i*dim+jdim]*solu[i];
solvGauss_x[jdim] += phi_x[i*dim+jdim]*solv[i];
xGauss[jdim] += x[jdim][i]*phi[i];
}
}
double c=.1;
double Id[2][2]={{1.,0.},{0.,1.}};
adept::adouble A2 = 1.;
vector < vector < adept::adouble> > B(dim);
for(unsigned jdim=0; jdim<dim; jdim++){
B[jdim].resize(dim);
A2 += soluGauss_x[jdim]*soluGauss_x[jdim];
}
adept::adouble A = sqrt(A2);
for(unsigned jdim=0; jdim<dim; jdim++){
for(unsigned kdim=0; kdim<dim; kdim++){
B[jdim][kdim]= Id[jdim][kdim] - (soluGauss_x[jdim] * soluGauss_x[kdim]) / A2;
}
}
// *** phi_i loop ***
for(unsigned i=0; i<nDofs; i++) {
adept::adouble nonLinearLaplaceU = 0.;
adept::adouble nonLinearLaplaceV = 0.;
for(unsigned jdim=0; jdim<dim; jdim++) {
nonLinearLaplaceU += - 1. / A * soluGauss_x[jdim] * phi_x[i*dim+jdim];
nonLinearLaplaceV += 1. / A * ( - ( B[jdim][0] * solvGauss_x[0] + B[jdim][1] * solvGauss_x[1] ) * phi_x[i*dim+jdim]
+ ( solvGauss*solvGauss/A2 + c ) * soluGauss_x[jdim] * phi_x[i*dim+jdim] );
}
aResu[i]+= ( 2.*solvGauss/A * phi[i] - nonLinearLaplaceU ) * weight;
aResv[i]+= nonLinearLaplaceV * weight;
} // end phi_i loop
} // end gauss point loop
} // endif single element not refined or fine grid loop
//--------------------------------------------------------------------------------------------------------
// Add the local Matrix/Vector into the global Matrix/Vector
//copy the value of the adept::adoube aRes in double Res and store
for(int i=0; i<nDofs; i++) {
Res[i] = aResu[i].value();
Res[nDofs+i] = aResv[i].value();
}
RES->add_vector_blocked(Res,KKDof);
if(assembleMatrix) {
// define the dependent variables
s.dependent(&aResu[0], nDofs);
s.dependent(&aResv[0], nDofs);
// define the independent variables
s.independent(&solu[0], nDofs);
s.independent(&solv[0], nDofs);
// get the jacobian matrix (ordered by column)
s.jacobian(&Jac[0]);
// get the jacobian matrix (ordered by raw, i.e. Jact=Jac^t)
for (int inode=0;inode<2*nDofs;inode++){
for (int jnode=0;jnode<2*nDofs;jnode++){
Jact[inode*2*nDofs+jnode]=-Jac[jnode*2*nDofs+inode];
}
}
//store Jact in the global matrix KK
KK->add_matrix_blocked(Jact,KKDof,KKDof);
s.clear_independents();
s.clear_dependents();
}
} //end element loop for each process
RES->close();
if( assembleMatrix ) KK->close();
// ***************** END ASSEMBLY *******************
}
示例13: AssembleMatrixRes_VC
//.........这里部分代码省略.........
for(int k = 0; k < n_unknowns; k++) {
L2G_dofmap[k].resize(Sol_n_el_dofs[k]);
Res_el[SolPdeIndex[k]].resize(Sol_n_el_dofs[k]);
memset(& Res_el[SolPdeIndex[k]][0], 0., Sol_n_el_dofs[k] * sizeof(double) );
Jac_el[SolPdeIndex[k]][SolPdeIndex[k]].resize(Sol_n_el_dofs[k] * Sol_n_el_dofs[k]);
memset(& Jac_el[SolPdeIndex[k]][SolPdeIndex[k]][0], 0., Sol_n_el_dofs[k] * Sol_n_el_dofs[k] * sizeof(double));
}
//all vars###################################################################
// *** quadrature loop ***
for(unsigned ig = 0; ig < ml_prob.GetQuadratureRule(ielGeom).GetGaussPointsNumber(); ig++) {
// *** get gauss point weight, test function and test function partial derivatives ***
for(int fe=0; fe < NFE_FAMS; fe++) {
msh->_finiteElement[ielGeom][fe]->Jacobian(coords_at_dofs,ig,weight_qp,phi_fe_qp[fe],phi_x_fe_qp[fe],phi_xx_fe_qp[fe]);
}
//HAVE TO RECALL IT TO HAVE BIQUADRATIC JACOBIAN
msh->_finiteElement[ielGeom][coords_fe_type]->Jacobian(coords_at_dofs,ig,weight_qp,phi_fe_qp[coords_fe_type],phi_x_fe_qp[coords_fe_type],phi_xx_fe_qp[coords_fe_type]);
//========= fill gauss value quantities ==================
std::fill(sol_qp.begin(), sol_qp.end(), 0.);
std::fill(sol_old_qp.begin(), sol_old_qp.end(), 0.);
for (unsigned k = 0; k < n_unknowns; k++) { std::fill(sol_grad_qp[k].begin(), sol_grad_qp[k].end(), 0.);
std::fill(sol_old_grad_qp[k].begin(), sol_old_grad_qp[k].end(), 0.);
}
for (unsigned k = 0; k < n_unknowns; k++) {
for (unsigned i = 0; i < Sol_n_el_dofs[k]; i++) {
sol_qp[k] += sol_eldofs[k][i] * phi_fe_qp[SolFEType[k]][i];
sol_old_qp[k] += sol_old_eldofs[k][i] * phi_fe_qp[SolFEType[k]][i];
for (unsigned d = 0; d < dim; d++) { sol_grad_qp[k][d] += sol_eldofs[k][i] * phi_x_fe_qp[SolFEType[k]][i * dim + d];
sol_old_grad_qp[k][d] += sol_old_eldofs[k][i] * phi_x_fe_qp[SolFEType[k]][i * dim + d];
}
}
}
//========= fill gauss value quantities ==================
// *** phi_i loop ***
for(unsigned i = 0; i < nDof_max; i++) {
//BEGIN RESIDUALS A block ===========================
double Lap_rhs_i = 0.;
double Lap_old_rhs_i = 0.;
for(unsigned d = 0; d < dim; d++) {
Lap_rhs_i += phi_x_fe_qp[SolFEType[0]][i * dim + d] * sol_grad_qp[0][d];
Lap_old_rhs_i += phi_x_fe_qp[SolFEType[0]][i * dim + d] * sol_old_grad_qp[0][d];
}
Res_el[SolPdeIndex[0]][i] += - weight_qp * (
delta_g_term * Singularity::function(sol_qp[0]) * Singularity::g_vc(sol_qp[0]) * phi_fe_qp[ SolFEType[0] ][i]
- delta_g_term * Singularity::function(sol_qp[0]) * Singularity::g_vc(sol_old_qp[0]) * phi_fe_qp[ SolFEType[0] ][i]
+ deltat_term * Singularity::function(sol_qp[0]) * dt * phi_fe_qp[ SolFEType[0] ][i]
+ lapl_term * dt * Lap_rhs_i
);
//END RESIDUALS A block ===========================
// *** phi_j loop ***
for(unsigned j = 0; j<nDof_max; j++) {
double Lap_mat_i_j = 0.;
for(unsigned d = 0; d < dim; d++) Lap_mat_i_j += phi_x_fe_qp[SolFEType[0]][i * dim + d] *
phi_x_fe_qp[SolFEType[0]][j * dim + d];
Jac_el[SolPdeIndex[0]][SolPdeIndex[0]][i * Sol_n_el_dofs[0] + j] += weight_qp * (
+ delta_g_term * phi_fe_qp[ SolFEType[0] ][i] * Singularity::derivative( phi_fe_qp[ SolFEType[0] ][j] ) * phi_fe_qp[ SolFEType[0] ][j] * Singularity::g_vc( phi_fe_qp[ SolFEType[0] ][j] )
+ delta_g_term * phi_fe_qp[ SolFEType[0] ][i] * Singularity::function ( phi_fe_qp[ SolFEType[0] ][j] ) * Singularity::g_vc_derivative( phi_fe_qp[ SolFEType[0] ][j] ) * phi_fe_qp[ SolFEType[0] ][j]
- delta_g_term * phi_fe_qp[ SolFEType[0] ][i] * Singularity::derivative( phi_fe_qp[ SolFEType[0] ][j] ) * phi_fe_qp[ SolFEType[0] ][j] * Singularity::g_vc( sol_old_qp[0] )
+ deltat_term * phi_fe_qp[ SolFEType[0] ][i] * Singularity::derivative( phi_fe_qp[ SolFEType[0] ][j] ) * phi_fe_qp[ SolFEType[0] ][j] * dt
+ lapl_term * dt * Lap_mat_i_j
);
} //end phij loop
} //end phii loop
} // end gauss point loop
//--------------------------------------------------------------------------------------------------------
//Sum the local matrices/vectors into the Global Matrix/Vector
for(unsigned ivar=0; ivar < n_unknowns; ivar++) {
RES->add_vector_blocked(Res_el[SolPdeIndex[ivar]],L2G_dofmap[ivar]);
JAC->add_matrix_blocked(Jac_el[SolPdeIndex[ivar]][SolPdeIndex[ivar]],L2G_dofmap[ivar],L2G_dofmap[ivar]);
}
//--------------------------------------------------------------------------------------------------------
} //end list of elements loop for each subdomain
JAC->close();
RES->close();
// ***************** END ASSEMBLY *******************
}
示例14: AssembleMatrixResNS
//.........这里部分代码省略.........
for(unsigned ivar=0; ivar<dim; ivar++) {
B[SolPdeIndex[ivar]][SolPdeIndex[ivar]][i*nve2+j] += IRe*Lap+ NavierStokes*newton*Adv1;
if(nwtn_alg==2){
// Advection term II
B[SolPdeIndex[ivar]][SolPdeIndex[ivar]][i*nve2+j] += Adv2*gradSolVAR[ivar][ivar];
for(unsigned ivar2=1; ivar2<dim; ivar2++) {
B[SolPdeIndex[ivar]][SolPdeIndex[(ivar+ivar2)%dim]][i*nve2+j] += Adv2*gradSolVAR[ivar][(ivar+ivar2)%dim];
}
}
}
} //end phij loop
// *** phi1_j loop ***
for(unsigned j=0; j<nve1; j++){
for(unsigned ivar=0; ivar<dim; ivar++) {
B[SolPdeIndex[ivar]][SolPdeIndex[dim]][i*nve1+j] -= gradphi2[i*dim+ivar]*phi1[j]*Weight2;
}
} //end phi1_j loop
} // endif assemble_matrix
} //end phii loop
// *** phi1_i loop ***
for(unsigned i=0; i<nve1; i++){
//BEGIN RESIDUALS B block ===========================
double div = 0;
for(unsigned ivar=0; ivar<dim; ivar++) {
div += gradSolVAR[ivar][ivar];
}
F[SolPdeIndex[dim]][i]+= (phi1[i]*div +penalty*ILambda*phi1[i]*SolVAR[dim])*Weight2;
//END RESIDUALS B block ===========================
if(assemble_matrix){
// *** phi_j loop ***
for(unsigned j=0; j<nve2; j++) {
for(unsigned ivar=0; ivar<dim; ivar++) {
B[SolPdeIndex[dim]][SolPdeIndex[ivar]][i*nve2+j]-= phi1[i]*gradphi2[j*dim+ivar]*Weight2;
}
} //end phij loop
} // endif assemble_matrix
} //end phi1_i loop
if(assemble_matrix * penalty){ //block nve1 nve1
// *** phi_i loop ***
for(unsigned i=0; i<nve1; i++){
// *** phi_j loop ***
for(unsigned j=0; j<nve1; j++){
B[SolPdeIndex[dim]][SolPdeIndex[dim]][i*nve1+j]-= ILambda*phi1[i]*phi1[j]*Weight2;
}
}
} //end if penalty
} // end gauss point loop
//--------------------------------------------------------------------------------------------------------
// Boundary Integral --> to be addded
//number of faces for each type of element
// if (igrid==gridn || !myel->GetRefinedElementIndex(kel) ) {
//
// unsigned nfaces = myel->GetElementFaceNumber(kel);
//
// // loop on faces
// for(unsigned jface=0;jface<nfaces;jface++){
//
// // look for boundary faces
// if(myel->GetFaceElementIndex(kel,jface)<0){
// for(unsigned ivar=0; ivar<dim; ivar++) {
// ml_prob.ComputeBdIntegral(pdename, &Solname[ivar][0], kel, jface, level, ivar);
// }
// }
// }
// }
//--------------------------------------------------------------------------------------------------------
} // endif single element not refined or fine grid loop
//--------------------------------------------------------------------------------------------------------
//Sum the local matrices/vectors into the Global Matrix/Vector
for(unsigned ivar=0; ivar<dim; ivar++) {
myRES->add_vector_blocked(F[SolPdeIndex[ivar]],KK_dof[ivar]);
if(assemble_matrix){
myKK->add_matrix_blocked(B[SolPdeIndex[ivar]][SolPdeIndex[ivar]],KK_dof[ivar],KK_dof[ivar]);
myKK->add_matrix_blocked(B[SolPdeIndex[ivar]][SolPdeIndex[dim]],KK_dof[ivar],KK_dof[dim]);
myKK->add_matrix_blocked(B[SolPdeIndex[dim]][SolPdeIndex[ivar]],KK_dof[dim],KK_dof[ivar]);
if(nwtn_alg==2){
for(unsigned ivar2=1; ivar2<dim; ivar2++) {
myKK->add_matrix_blocked(B[SolPdeIndex[ivar]][SolPdeIndex[(ivar+ivar2)%dim]],KK_dof[ivar],KK_dof[(ivar+ivar2)%dim]);
}
}
}
}
//Penalty
if(assemble_matrix*penalty) myKK->add_matrix_blocked(B[SolPdeIndex[dim]][SolPdeIndex[dim]],KK_dof[dim],KK_dof[dim]);
myRES->add_vector_blocked(F[SolPdeIndex[dim]],KK_dof[dim]);
//--------------------------------------------------------------------------------------------------------
} //end list of elements loop for each subdomain
if(assemble_matrix) myKK->close();
myRES->close();
// ***************** END ASSEMBLY *******************
}
示例15: AssembleProblem
//.........这里部分代码省略.........
//=========== delta_adjoint row ===========================
Jac[ assemble_jacobian<double,double>::jac_row_col_index(Sol_n_el_dofs, nDof_AllVars, pos_adj, pos_state, i, j) ] += m_b_f[pos_adj][pos_state] * weight_qp * (
assemble_jacobian<double,double>::laplacian_row_col(phi_x_fe_qp_vec,phi_x_fe_qp_vec, pos_adj, pos_state, i, j, dim)
- phi_fe_qp[pos_adj][i] *
nonlin_term_derivative(phi_fe_qp[pos_state][j]) *
sol_qp[pos_ctrl]
);
Jac[ assemble_jacobian<double,double>::jac_row_col_index(Sol_n_el_dofs, nDof_AllVars, pos_adj, pos_ctrl, i, j) ] += m_b_f[pos_adj][pos_ctrl] * weight_qp * (
- phi_fe_qp[pos_adj][i] *
phi_fe_qp[pos_ctrl][j] *
nonlin_term_function(sol_qp[pos_state])
);
} // end phi_j loop
} // endif assemble_matrix
} // end phi_i loop
} // end gauss point loop
//std::vector<double> Res_ctrl (Sol_n_el_dofs[pos_ctrl]); std::fill(Res_ctrl.begin(),Res_ctrl.end(), 0.);
for (unsigned i = 0; i < sol_eldofs[pos_ctrl].size(); i++) {
unsigned n_els_that_node = 1;
if ( control_el_flag == 1) {
// Res[Sol_n_el_dofs[pos_state] + i] += - ( + n_els_that_node * ineq_flag * sol_eldofs[pos_mu][i] /*- ( 0.4 + sin(M_PI * x[0][i]) * sin(M_PI * x[1][i]) )*/ );
// Res_ctrl[i] = Res[Sol_n_el_dofs[pos_state] + i];
}
}
//========== end of integral-based part
RES->add_vector_blocked(Res, L2G_dofmap_AllVars);
if (assembleMatrix) KK->add_matrix_blocked(Jac, L2G_dofmap_AllVars, L2G_dofmap_AllVars);
//========== dof-based part, without summation
//============= delta_mu row ===============================
std::vector<double> Res_mu (Sol_n_el_dofs[pos_mu]); std::fill(Res_mu.begin(),Res_mu.end(), 0.);
for (unsigned i = 0; i < sol_actflag.size(); i++) {
if (sol_actflag[i] == 0) { //inactive
Res_mu [i] = (- ineq_flag) * ( 1. * sol_eldofs[pos_mu][i] );
// Res_mu [i] = Res[res_row_index(Sol_n_el_dofs,pos_mu,i)];
}
else if (sol_actflag[i] == 1) { //active_a
Res_mu [i] = (- ineq_flag) * c_compl * ( sol_eldofs[pos_ctrl][i] - ctrl_lower[i]);
}
else if (sol_actflag[i] == 2) { //active_b
Res_mu [i] = (- ineq_flag) * c_compl * ( sol_eldofs[pos_ctrl][i] - ctrl_upper[i]);
}
}
RES->insert(Res_mu, L2G_dofmap[pos_mu]);
//============= delta_ctrl - mu ===============================
KK->matrix_set_off_diagonal_values_blocked(L2G_dofmap[pos_ctrl], L2G_dofmap[pos_mu], m_b_f[pos_ctrl][pos_mu] * ineq_flag * 1.);
//============= delta_mu - ctrl row ===============================
for (unsigned i = 0; i < sol_actflag.size(); i++) if (sol_actflag[i] != 0 ) sol_actflag[i] = m_b_f[pos_mu][pos_ctrl] * ineq_flag * c_compl;
KK->matrix_set_off_diagonal_values_blocked(L2G_dofmap[pos_mu], L2G_dofmap[pos_ctrl], sol_actflag);
//============= delta_mu - mu row ===============================
for (unsigned i = 0; i < sol_actflag.size(); i++) sol_actflag[i] = m_b_f[pos_mu][pos_mu] * ( ineq_flag * (1 - sol_actflag[i]/c_compl) + (1-ineq_flag) * 1. ); //can do better to avoid division, maybe use modulo operator
KK->matrix_set_off_diagonal_values_blocked(L2G_dofmap[pos_mu], L2G_dofmap[pos_mu], sol_actflag );
} //end element loop for each process
RES->close();
if (assembleMatrix) KK->close();
// std::ostringstream mat_out; mat_out << ml_prob.GetFilesHandler()->GetOutputPath() << "/" << "jacobian" << mlPdeSys->GetNonlinearIt() << ".txt";
// KK->print_matlab(mat_out.str(),"ascii");
// KK->print();
// ***************** END ASSEMBLY *******************
unsigned int global_ctrl_size = pdeSys->KKoffset[pos_ctrl+1][iproc] - pdeSys->KKoffset[pos_ctrl][iproc];
std::vector<double> one_times_mu(global_ctrl_size, 0.);
std::vector<int> positions(global_ctrl_size);
// double position_mu_i;
for (unsigned i = 0; i < positions.size(); i++) {
positions[i] = pdeSys->KKoffset[pos_ctrl][iproc] + i;
// position_mu_i = pdeSys->KKoffset[pos_mu][iproc] + i;
// std::cout << position_mu_i << std::endl;
one_times_mu[i] = m_b_f[pos_ctrl][pos_mu] * ineq_flag * 1. * (*sol->_Sol[SolIndex[pos_mu]])(i/*position_mu_i*/) ;
}
RES->add_vector_blocked(one_times_mu, positions);
// RES->print();
return;
}