本文整理汇总了C++中SparseMatrix::Size方法的典型用法代码示例。如果您正苦于以下问题:C++ SparseMatrix::Size方法的具体用法?C++ SparseMatrix::Size怎么用?C++ SparseMatrix::Size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SparseMatrix
的用法示例。
在下文中一共展示了SparseMatrix::Size方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Print
void Print(const SparseMatrix<T>& M)
{
// Print a SparseMatrix to the screen.
const unsigned int* col_buf = M.LockedColBuffer();
const unsigned int* row_buf = M.LockedRowBuffer();
const T* buf = M.LockedDataBuffer();
if (0 == M.Size())
{
std::cout << "Matrix is empty." << std::endl;
return;
}
for (unsigned int c=0; c != M.Width(); ++c)
{
unsigned int start = col_buf[c];
unsigned int end = col_buf[c+1];
for (unsigned int offset=start; offset != end; ++offset)
{
assert(offset >= 0);
assert(offset < M.Size());
unsigned int row_index = row_buf[offset];
T data = buf[offset];
std::cout << "(" << row_index << ", " << c << "): " << data << std::endl;
}
}
std::cout << "Col indices: "; std::cout.flush();
for (unsigned int i=0; i != M.Width(); ++i)
std::cout << col_buf[i] << ", ";
std::cout << col_buf[M.Width()] << std::endl;
std::cout << "Row indices: "; std::cout.flush();
for (unsigned int i=0; i != M.Size(); ++i)
std::cout << row_buf[i] << ", ";
std::cout << std::endl;
std::cout << "Data: "; std::cout.flush();
for (unsigned int i=0; i != M.Size(); ++i)
std::cout << buf[i] << ", ";
std::cout << std::endl;
}
示例2: FrobeniusNorm
T FrobeniusNorm(const SparseMatrix<T>& A)
{
// compute the sum of the absolute value squared of each element
const T* data_a = A.LockedDataBuffer();
const unsigned int size_a = A.Size();
T sum = T(0);
for (unsigned int i=0; i != size_a; ++i)
{
T val = fabs(data_a[i]);
sum += val*val;
}
return sqrt(sum);
}
示例3: MaxNorm
T MaxNorm(const SparseMatrix<T>& A)
{
// find max( |A_ij| )
const T* data_a = A.LockedDataBuffer();
const unsigned int size_a = A.Size();
T max_norm = T(0);
for (unsigned int i=0; i != size_a; ++i)
{
T val = fabs(data_a[i]);
if (val > max_norm)
max_norm = val;
}
return max_norm;
}
示例4: WriteMatrixMarketFile
bool WriteMatrixMarketFile(const std::string& file_path,
const SparseMatrix<T>& A,
const unsigned int precision)
{
// Write a MatrixMarket file with no comments. Note that the
// MatrixMarket format uses 1-based indexing for rows and columns.
std::ofstream outfile(file_path);
if (!outfile)
return false;
unsigned int height = A.Height();
unsigned int width = A.Width();
unsigned int nnz = A.Size();
// write the 'banner'
outfile << MM_BANNER << " matrix coordinate real general" << std::endl;
// write matrix dimensions and number of nonzeros
outfile << height << " " << width << " " << nnz << std::endl;
outfile << std::fixed;
outfile.precision(precision);
const unsigned int* cols_a = A.LockedColBuffer();
const unsigned int* rows_a = A.LockedRowBuffer();
const T* data_a = A.LockedDataBuffer();
unsigned int width_a = A.Width();
for (unsigned int c=0; c != width_a; ++c)
{
unsigned int start = cols_a[c];
unsigned int end = cols_a[c+1];
for (unsigned int offset=start; offset != end; ++offset)
{
unsigned int r = rows_a[offset];
T val = data_a[offset];
outfile << r+1 << " " << c+1 << " " << val << std::endl;
}
}
outfile.close();
return true;
}
示例5: Nmf
//-----------------------------------------------------------------------------
void Nmf(const unsigned int kval,
const Algorithm algorithm,
const std::string& csv_file_w,
const std::string& csv_file_h)
{
if (!matrix_loaded)
throw std::logic_error("smallk error (NMF): no matrix has been loaded.");
if (max_iter < min_iter)
throw std::logic_error("smallk error (NMF): min_iterations exceeds max_iterations.");
if (0 == kval)
throw std::logic_error("smallk error (NMF): k must be greater than 0.");
// Check the sizes of matrix W(m, k) and matrix H(k, n) and make sure
// they don't overflow Elemental's default signed int index type.
if (!SizeCheck<int>(m, kval))
throw std::logic_error("smallk error (Nmf): mxk matrix W is too large.");
if (!SizeCheck<int>(kval, n))
throw std::logic_error("smallk error (Nmf): kxn matrix H is too large.");
k = kval;
// convert to the 'NmfAlgorithm' type in nmf.hpp
switch (algorithm)
{
case Algorithm::MU:
nmf_opts.algorithm = NmfAlgorithm::MU;
break;
case Algorithm::HALS:
nmf_opts.algorithm = NmfAlgorithm::HALS;
break;
case Algorithm::RANK2:
nmf_opts.algorithm = NmfAlgorithm::RANK2;
break;
case Algorithm::BPP:
nmf_opts.algorithm = NmfAlgorithm::BPP;
break;
default:
throw std::logic_error("smallk error (NMF): unknown NMF algorithm.");
}
// set k == 2 for Rank2 algorithm
if (NmfAlgorithm::RANK2 == nmf_opts.algorithm)
k = 2;
ldim_w = m;
ldim_h = k;
if (buf_w.size() < m*k)
buf_w.resize(m*k);
if (buf_h.size() < k*n)
buf_h.resize(k*n);
// initialize matrices W and H
bool ok;
unsigned int height_w = m, width_w = k, height_h = k, width_h = n;
cout << "Initializing matrix W..." << endl;
if (csv_file_w.empty())
ok = RandomMatrix(&buf_w[0], ldim_w, m, k, rng);
else
ok = LoadDelimitedFile(buf_w, height_w, width_w, csv_file_w);
if (!ok)
{
std::ostringstream msg;
msg << "smallk error (Nmf): load failed for file ";
msg << "\"" << csv_file_w << "\"";
throw std::runtime_error(msg.str());
}
if ( (height_w != m) || (width_w != k))
{
cerr << "\tdimensions of matrix W are " << height_w
<< " x " << width_w << endl;
cerr << "\texpected " << m << " x " << k << endl;
throw std::logic_error("smallk error (Nmf): non-conformant matrix W.");
}
cout << "Initializing matrix H..." << endl;
if (csv_file_h.empty())
ok = RandomMatrix(&buf_h[0], ldim_h, k, n, rng);
else
ok = LoadDelimitedFile(buf_h, height_h, width_h, csv_file_h);
if (!ok)
{
std::ostringstream msg;
msg << "smallk error (Nmf): load failed for file ";
msg << "\"" << csv_file_h << "\"";
throw std::runtime_error(msg.str());
}
if ( (height_h != k) || (width_h != n))
{
cerr << "\tdimensions of matrix H are " << height_h
<< " x " << width_h << endl;
//.........这里部分代码省略.........
示例6: main
//.........这里部分代码省略.........
return -1;
}
opts.clust_opts.nmf_opts.height = m;
opts.clust_opts.nmf_opts.width = n;
opts.clust_opts.nmf_opts.k = 2;
// leading dimensions for dense matrix A data buffer
ldim_a = m;
// print a summary of all options
if (opts.clust_opts.verbose)
PrintOpts(opts);
//-------------------------------------------------------------------------
//
// run the selected clustering algorithm
//
//-------------------------------------------------------------------------
// W and H buffer for flat clustering
std::vector<R> buf_w(m*num_clusters);
std::vector<R> buf_h(num_clusters*n);
Tree<R> tree;
ClustStats stats;
std::vector<float> probabilities;
std::vector<unsigned int> assignments_flat;
std::vector<int> term_indices(opts.clust_opts.maxterms * num_clusters);
Result result = Result::OK;
timer.Start();
if (A.Size() > 0)
{
result = ClustSparse(opts.clust_opts, A,
&buf_w[0], &buf_h[0], tree, stats, rng);
}
else
{
result = Clust(opts.clust_opts, &buf_a[0], ldim_a,
&buf_w[0], &buf_h[0], tree, stats, rng);
}
if (opts.clust_opts.flat)
{
// compute flat clustering assignments and top terms
unsigned int k = num_clusters;
ComputeFuzzyAssignments(probabilities, &buf_h[0], k, k, n);
ComputeAssignments(assignments_flat, &buf_h[0], k, k, n);
TopTerms(opts.clust_opts.maxterms, &buf_w[0], m, m, k, term_indices);
}
timer.Stop();
double elapsed = timer.ReportMilliseconds();
cout << "\nElapsed wall clock time: ";
if (elapsed < 1000.0)
cout << elapsed << " ms." << endl;
else
cout << elapsed*0.001 << " s." << endl;
int num_converged = stats.nmf_count - stats.max_count;
cout << num_converged << "/" << stats.nmf_count << " factorizations"
<< " converged." << endl << endl;