本文整理汇总了C++中SmallPtrSet::size方法的典型用法代码示例。如果您正苦于以下问题:C++ SmallPtrSet::size方法的具体用法?C++ SmallPtrSet::size怎么用?C++ SmallPtrSet::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SmallPtrSet
的用法示例。
在下文中一共展示了SmallPtrSet::size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: CollectBasicBlocks
/// \brief Find an insertion point that dominates all uses.
Instruction *ConstantHoisting::
FindConstantInsertionPoint(Function &F, const ConstantInfo &CI) const {
BasicBlock *Entry = &F.getEntryBlock();
// Collect all basic blocks.
SmallPtrSet<BasicBlock *, 4> BBs;
ConstantInfo::RebasedConstantListType::const_iterator RCI, RCE;
for (RCI = CI.RebasedConstants.begin(), RCE = CI.RebasedConstants.end();
RCI != RCE; ++RCI)
for (SmallVectorImpl<User *>::const_iterator U = RCI->Uses.begin(),
E = RCI->Uses.end(); U != E; ++U)
CollectBasicBlocks(BBs, F, *U);
if (BBs.count(Entry))
return Entry->getFirstInsertionPt();
while (BBs.size() >= 2) {
BasicBlock *BB, *BB1, *BB2;
BB1 = *BBs.begin();
BB2 = *llvm::next(BBs.begin());
BB = DT->findNearestCommonDominator(BB1, BB2);
if (BB == Entry)
return Entry->getFirstInsertionPt();
BBs.erase(BB1);
BBs.erase(BB2);
BBs.insert(BB);
}
assert((BBs.size() == 1) && "Expected only one element.");
return (*BBs.begin())->getFirstInsertionPt();
}
示例2: RemoveUnreachableBlocksFromFn
/// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even
/// if they are in a dead cycle. Return true if a change was made, false
/// otherwise.
static bool RemoveUnreachableBlocksFromFn(Function &F) {
SmallPtrSet<BasicBlock*, 128> Reachable;
bool Changed = MarkAliveBlocks(F.begin(), Reachable);
// If there are unreachable blocks in the CFG...
if (Reachable.size() == F.size())
return Changed;
assert(Reachable.size() < F.size());
NumSimpl += F.size()-Reachable.size();
// Loop over all of the basic blocks that are not reachable, dropping all of
// their internal references...
for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
if (Reachable.count(BB))
continue;
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.count(*SI))
(*SI)->removePredecessor(BB);
BB->dropAllReferences();
}
for (Function::iterator I = ++F.begin(); I != F.end();)
if (!Reachable.count(I))
I = F.getBasicBlockList().erase(I);
else
++I;
return true;
}
示例3: findMatInsertPt
/// \brief Find an insertion point that dominates all uses.
Instruction *ConstantHoistingPass::findConstantInsertionPoint(
const ConstantInfo &ConstInfo) const {
assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
// Collect all basic blocks.
SmallPtrSet<BasicBlock *, 8> BBs;
for (auto const &RCI : ConstInfo.RebasedConstants)
for (auto const &U : RCI.Uses)
BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
if (BBs.count(Entry))
return &Entry->front();
while (BBs.size() >= 2) {
BasicBlock *BB, *BB1, *BB2;
BB1 = *BBs.begin();
BB2 = *std::next(BBs.begin());
BB = DT->findNearestCommonDominator(BB1, BB2);
if (BB == Entry)
return &Entry->front();
BBs.erase(BB1);
BBs.erase(BB2);
BBs.insert(BB);
}
assert((BBs.size() == 1) && "Expected only one element.");
Instruction &FirstInst = (*BBs.begin())->front();
return findMatInsertPt(&FirstInst);
}
示例4: calcLoopBranchHeuristics
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
Loop *L = LI->getLoopFor(BB);
if (!L)
return false;
SmallPtrSet<BasicBlock *, 8> BackEdges;
SmallPtrSet<BasicBlock *, 8> ExitingEdges;
SmallPtrSet<BasicBlock *, 8> InEdges; // Edges from header to the loop.
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
if (!L->contains(*I))
ExitingEdges.insert(*I);
else if (L->getHeader() == *I)
BackEdges.insert(*I);
else
InEdges.insert(*I);
}
if (uint32_t numBackEdges = BackEdges.size()) {
uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
if (backWeight < NORMAL_WEIGHT)
backWeight = NORMAL_WEIGHT;
for (SmallPtrSet<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
EE = BackEdges.end(); EI != EE; ++EI) {
BasicBlock *Back = *EI;
setEdgeWeight(BB, Back, backWeight);
}
}
if (uint32_t numInEdges = InEdges.size()) {
uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
if (inWeight < NORMAL_WEIGHT)
inWeight = NORMAL_WEIGHT;
for (SmallPtrSet<BasicBlock *, 8>::iterator EI = InEdges.begin(),
EE = InEdges.end(); EI != EE; ++EI) {
BasicBlock *Back = *EI;
setEdgeWeight(BB, Back, inWeight);
}
}
if (uint32_t numExitingEdges = ExitingEdges.size()) {
uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
if (exitWeight < MIN_WEIGHT)
exitWeight = MIN_WEIGHT;
for (SmallPtrSet<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
EE = ExitingEdges.end(); EI != EE; ++EI) {
BasicBlock *Exiting = *EI;
setEdgeWeight(BB, Exiting, exitWeight);
}
}
return true;
}
示例5:
TEST(SmallPtrSetTest, GrowthTest) {
int i;
int buf[8];
for(i=0; i<8; ++i) buf[i]=0;
SmallPtrSet<int *, 4> s;
typedef SmallPtrSet<int *, 4>::iterator iter;
s.insert(&buf[0]);
s.insert(&buf[1]);
s.insert(&buf[2]);
s.insert(&buf[3]);
EXPECT_EQ(4U, s.size());
i = 0;
for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
(**I)++;
EXPECT_EQ(4, i);
for(i=0; i<8; ++i)
EXPECT_EQ(i<4?1:0,buf[i]);
s.insert(&buf[4]);
s.insert(&buf[5]);
s.insert(&buf[6]);
s.insert(&buf[7]);
i = 0;
for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
(**I)++;
EXPECT_EQ(8, i);
s.erase(&buf[4]);
s.erase(&buf[5]);
s.erase(&buf[6]);
s.erase(&buf[7]);
EXPECT_EQ(4U, s.size());
i = 0;
for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
(**I)++;
EXPECT_EQ(4, i);
for(i=0; i<8; ++i)
EXPECT_EQ(i<4?3:1,buf[i]);
s.clear();
for(i=0; i<8; ++i) buf[i]=0;
for(i=0; i<128; ++i) s.insert(&buf[i%8]); // test repeated entires
EXPECT_EQ(8U, s.size());
for(iter I=s.begin(), E=s.end(); I!=E; ++I, ++i)
(**I)++;
for(i=0; i<8; ++i)
EXPECT_EQ(1,buf[i]);
}
示例6: TestInsts
bool ReduceCrashingInstructions::TestInsts(std::vector<const Instruction*>
&Insts) {
// Clone the program to try hacking it apart...
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap);
// Convert list to set for fast lookup...
SmallPtrSet<Instruction*, 64> Instructions;
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
assert(!isa<TerminatorInst>(Insts[i]));
Instructions.insert(cast<Instruction>(VMap[Insts[i]]));
}
outs() << "Checking for crash with only " << Instructions.size();
if (Instructions.size() == 1)
outs() << " instruction: ";
else
outs() << " instructions: ";
for (Module::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI)
for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI)
for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E;) {
Instruction *Inst = I++;
if (!Instructions.count(Inst) && !isa<TerminatorInst>(Inst) &&
!isa<LandingPadInst>(Inst)) {
if (!Inst->getType()->isVoidTy())
Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Inst->eraseFromParent();
}
}
// Verify that this is still valid.
PassManager Passes;
Passes.add(createVerifierPass());
Passes.add(createDebugInfoVerifierPass());
Passes.run(*M);
// Try running on the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use instruction pointers that point into the now-current
// module, and that they don't include any deleted blocks.
Insts.clear();
for (SmallPtrSet<Instruction*, 64>::const_iterator I = Instructions.begin(),
E = Instructions.end(); I != E; ++I)
Insts.push_back(*I);
return true;
}
delete M; // It didn't crash, try something else.
return false;
}
示例7: TestNamedMDOps
bool ReduceCrashingNamedMDOps::TestNamedMDOps(
std::vector<const MDNode *> &NamedMDOps) {
// Convert list to set for fast lookup...
SmallPtrSet<const MDNode *, 32> OldMDNodeOps;
for (unsigned i = 0, e = NamedMDOps.size(); i != e; ++i) {
OldMDNodeOps.insert(NamedMDOps[i]);
}
outs() << "Checking for crash with only " << OldMDNodeOps.size();
if (OldMDNodeOps.size() == 1)
outs() << " named metadata operand: ";
else
outs() << " named metadata operands: ";
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap).release();
// This is a little wasteful. In the future it might be good if we could have
// these dropped during cloning.
for (auto &NamedMD : BD.getProgram()->named_metadata()) {
// Drop the old one and create a new one
M->eraseNamedMetadata(M->getNamedMetadata(NamedMD.getName()));
NamedMDNode *NewNamedMDNode =
M->getOrInsertNamedMetadata(NamedMD.getName());
for (MDNode *op : NamedMD.operands())
if (OldMDNodeOps.count(op))
NewNamedMDNode->addOperand(cast<MDNode>(MapMetadata(op, VMap)));
}
// Verify that this is still valid.
legacy::PassManager Passes;
Passes.add(createVerifierPass(/*FatalErrors=*/false));
Passes.run(*M);
// Try running on the hacked up program...
if (TestFn(BD, M)) {
// Make sure to use instruction pointers that point into the now-current
// module, and that they don't include any deleted blocks.
NamedMDOps.clear();
for (const MDNode *Node : OldMDNodeOps)
NamedMDOps.push_back(cast<MDNode>(*VMap.getMappedMD(Node)));
BD.setNewProgram(M); // It crashed, keep the trimmed version...
return true;
}
delete M; // It didn't crash, try something else.
return false;
}
示例8: visitSwitchInst
bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
// We model unconditional switches as free, see the comments on handling
// branches.
if (isa<ConstantInt>(SI.getCondition()))
return true;
if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
if (isa<ConstantInt>(V))
return true;
// Otherwise, we need to accumulate a cost proportional to the number of
// distinct successor blocks. This fan-out in the CFG cannot be represented
// for free even if we can represent the core switch as a jumptable that
// takes a single instruction.
//
// NB: We convert large switches which are just used to initialize large phi
// nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
// inlining those. It will prevent inlining in cases where the optimization
// does not (yet) fire.
SmallPtrSet<BasicBlock *, 8> SuccessorBlocks;
SuccessorBlocks.insert(SI.getDefaultDest());
for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I)
SuccessorBlocks.insert(I.getCaseSuccessor());
// Add cost corresponding to the number of distinct destinations. The first
// we model as free because of fallthrough.
Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost;
return false;
}
示例9: shouldElide
bool Lowerer::shouldElide() const {
// If no CoroAllocs, we cannot suppress allocation, so elision is not
// possible.
if (CoroAllocs.empty())
return false;
// Check that for every coro.begin there is a coro.destroy directly
// referencing the SSA value of that coro.begin. If the value escaped, then
// coro.destroy would have been referencing a memory location storing that
// value and not the virtual register.
SmallPtrSet<CoroBeginInst *, 8> ReferencedCoroBegins;
for (CoroSubFnInst *DA : DestroyAddr) {
if (auto *CB = dyn_cast<CoroBeginInst>(DA->getFrame()))
ReferencedCoroBegins.insert(CB);
else
return false;
}
// If size of the set is the same as total number of CoroBegins, means we
// found a coro.free or coro.destroy mentioning a coro.begin and we can
// perform heap elision.
return ReferencedCoroBegins.size() == CoroBegins.size();
}
示例10: simplifyUsers
/// Iteratively perform simplification on a worklist of users
/// of the specified induction variable. Each successive simplification may push
/// more users which may themselves be candidates for simplification.
///
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
/// instructions in-place during analysis. Rather than rewriting induction
/// variables bottom-up from their users, it transforms a chain of IVUsers
/// top-down, updating the IR only when it encounters a clear optimization
/// opportunity.
///
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
///
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
if (!SE->isSCEVable(CurrIV->getType()))
return;
// Instructions processed by SimplifyIndvar for CurrIV.
SmallPtrSet<Instruction*,16> Simplified;
// Use-def pairs if IV users waiting to be processed for CurrIV.
SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
// Push users of the current LoopPhi. In rare cases, pushIVUsers may be
// called multiple times for the same LoopPhi. This is the proper thing to
// do for loop header phis that use each other.
pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
while (!SimpleIVUsers.empty()) {
std::pair<Instruction*, Instruction*> UseOper =
SimpleIVUsers.pop_back_val();
Instruction *UseInst = UseOper.first;
// Bypass back edges to avoid extra work.
if (UseInst == CurrIV) continue;
Instruction *IVOperand = UseOper.second;
for (unsigned N = 0; IVOperand; ++N) {
assert(N <= Simplified.size() && "runaway iteration");
Value *NewOper = foldIVUser(UseOper.first, IVOperand);
if (!NewOper)
break; // done folding
IVOperand = dyn_cast<Instruction>(NewOper);
}
if (!IVOperand)
continue;
if (eliminateIVUser(UseOper.first, IVOperand)) {
pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
continue;
}
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
if (isa<OverflowingBinaryOperator>(BO) &&
strengthenOverflowingOperation(BO, IVOperand)) {
// re-queue uses of the now modified binary operator and fall
// through to the checks that remain.
pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
}
}
CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
if (V && Cast) {
V->visitCast(Cast);
continue;
}
if (isSimpleIVUser(UseOper.first, L, SE)) {
pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
}
}
}
示例11: calcUnreachableHeuristics
/// \brief Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
if (isa<UnreachableInst>(TI))
PostDominatedByUnreachable.insert(BB);
return false;
}
SmallPtrSet<BasicBlock *, 4> UnreachableEdges;
SmallPtrSet<BasicBlock *, 4> ReachableEdges;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
if (PostDominatedByUnreachable.count(*I))
UnreachableEdges.insert(*I);
else
ReachableEdges.insert(*I);
}
// If all successors are in the set of blocks post-dominated by unreachable,
// this block is too.
if (UnreachableEdges.size() == TI->getNumSuccessors())
PostDominatedByUnreachable.insert(BB);
// Skip probabilities if this block has a single successor or if all were
// reachable.
if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
return false;
uint32_t UnreachableWeight =
std::max(UR_TAKEN_WEIGHT / UnreachableEdges.size(), MIN_WEIGHT);
for (SmallPtrSet<BasicBlock *, 4>::iterator I = UnreachableEdges.begin(),
E = UnreachableEdges.end();
I != E; ++I)
setEdgeWeight(BB, *I, UnreachableWeight);
if (ReachableEdges.empty())
return true;
uint32_t ReachableWeight =
std::max(UR_NONTAKEN_WEIGHT / ReachableEdges.size(), NORMAL_WEIGHT);
for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReachableEdges.begin(),
E = ReachableEdges.end();
I != E; ++I)
setEdgeWeight(BB, *I, ReachableWeight);
return true;
}
示例12: assert
/// Find an insertion point that dominates all uses.
SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint(
const ConstantInfo &ConstInfo) const {
assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
// Collect all basic blocks.
SmallPtrSet<BasicBlock *, 8> BBs;
SmallPtrSet<Instruction *, 8> InsertPts;
for (auto const &RCI : ConstInfo.RebasedConstants)
for (auto const &U : RCI.Uses)
BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
if (BBs.count(Entry)) {
InsertPts.insert(&Entry->front());
return InsertPts;
}
if (BFI) {
findBestInsertionSet(*DT, *BFI, Entry, BBs);
for (auto BB : BBs) {
BasicBlock::iterator InsertPt = BB->begin();
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
;
InsertPts.insert(&*InsertPt);
}
return InsertPts;
}
while (BBs.size() >= 2) {
BasicBlock *BB, *BB1, *BB2;
BB1 = *BBs.begin();
BB2 = *std::next(BBs.begin());
BB = DT->findNearestCommonDominator(BB1, BB2);
if (BB == Entry) {
InsertPts.insert(&Entry->front());
return InsertPts;
}
BBs.erase(BB1);
BBs.erase(BB2);
BBs.insert(BB);
}
assert((BBs.size() == 1) && "Expected only one element.");
Instruction &FirstInst = (*BBs.begin())->front();
InsertPts.insert(findMatInsertPt(&FirstInst));
return InsertPts;
}
示例13: FindContextVariables
void LowerEmAsyncify::FindContextVariables(AsyncCallEntry & Entry) {
BasicBlock *AfterCallBlock = Entry.AfterCallBlock;
Function & F = *AfterCallBlock->getParent();
// Create a new entry block as if in the callback function
// theck check variables that no longer properly dominate their uses
BasicBlock *EntryBlock = BasicBlock::Create(TheModule->getContext(), "", &F, &F.getEntryBlock());
BranchInst::Create(AfterCallBlock, EntryBlock);
DominatorTreeWrapperPass DTW;
DTW.runOnFunction(F);
DominatorTree& DT = DTW.getDomTree();
// These blocks may be using some values defined at or before AsyncCallBlock
BasicBlockSet Ramifications = FindReachableBlocksFrom(AfterCallBlock);
SmallPtrSet<Value*, 256> ContextVariables;
Values Pending;
// Examine the instructions, find all variables that we need to store in the context
for (BasicBlockSet::iterator RI = Ramifications.begin(), RE = Ramifications.end(); RI != RE; ++RI) {
for (BasicBlock::iterator I = (*RI)->begin(), E = (*RI)->end(); I != E; ++I) {
for (unsigned i = 0, NumOperands = I->getNumOperands(); i < NumOperands; ++i) {
Value *O = I->getOperand(i);
if (Instruction *Inst = dyn_cast<Instruction>(O)) {
if (Inst == Entry.AsyncCallInst) continue; // for the original async call, we will load directly from async return value
if (ContextVariables.count(Inst) != 0) continue; // already examined
if (!DT.dominates(Inst, I->getOperandUse(i))) {
// `I` is using `Inst`, yet `Inst` does not dominate `I` if we arrive directly at AfterCallBlock
// so we need to save `Inst` in the context
ContextVariables.insert(Inst);
Pending.push_back(Inst);
}
} else if (Argument *Arg = dyn_cast<Argument>(O)) {
// count() should be as fast/slow as insert, so just insert here
ContextVariables.insert(Arg);
}
}
}
}
// restore F
EntryBlock->eraseFromParent();
Entry.ContextVariables.clear();
Entry.ContextVariables.reserve(ContextVariables.size());
for (SmallPtrSet<Value*, 256>::iterator I = ContextVariables.begin(), E = ContextVariables.end(); I != E; ++I) {
Entry.ContextVariables.push_back(*I);
}
}
示例14: isArgValueEquivalentToCondition
/// Check if the root value for Value that comes
/// along the path from DomBB is equivalent to the
/// DomCondition.
SILValue CheckedCastBrJumpThreading::isArgValueEquivalentToCondition(
SILValue Value, SILBasicBlock *DomBB, SILValue DomValue,
DominanceInfo *DT) {
SmallPtrSet<ValueBase *, 16> SeenValues;
DomValue = DomValue.stripClassCasts();
while (true) {
Value = Value.stripClassCasts();
if (Value == DomValue)
return Value;
// We know how to propagate through BBArgs only.
auto *V = dyn_cast<SILArgument>(Value);
if (!V)
return SILValue();
// Have we visited this BB already?
if (!SeenValues.insert(Value.getDef()).second)
return SILValue();
if (SeenValues.size() > 10)
return SILValue();
SmallVector<SILValue, 4> IncomingValues;
if (!V->getIncomingValues(IncomingValues) || IncomingValues.empty())
return SILValue();
ValueBase *Def = nullptr;
for (auto IncomingValue : IncomingValues) {
// Each incoming value should be either from a block
// dominated by DomBB or it should be the value used in
// condition in DomBB
Value = IncomingValue.stripClassCasts();
if (Value == DomValue)
continue;
// Values should be the same
if (!Def)
Def = Value.getDef();
if (Def != Value.getDef())
return SILValue();
if (!DT->dominates(DomBB, Value.getDef()->getParentBB()))
return SILValue();
// OK, this value is a potential candidate
}
Value = IncomingValues[0];
}
}
示例15: calcReturnHeuristics
// Calculate Edge Weights using "Return Heuristics". Predict a successor which
// leads directly to Return Instruction will not be taken.
bool BranchProbabilityAnalysis::calcReturnHeuristics(BasicBlock *BB){
if (BB->getTerminator()->getNumSuccessors() == 1)
return false;
SmallPtrSet<BasicBlock *, 4> ReturningEdges;
SmallPtrSet<BasicBlock *, 4> StayEdges;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
if (isReturningBlock(Succ))
ReturningEdges.insert(Succ);
else
StayEdges.insert(Succ);
}
if (uint32_t numStayEdges = StayEdges.size()) {
uint32_t stayWeight = RH_TAKEN_WEIGHT / numStayEdges;
if (stayWeight < NORMAL_WEIGHT)
stayWeight = NORMAL_WEIGHT;
for (SmallPtrSet<BasicBlock *, 4>::iterator I = StayEdges.begin(),
E = StayEdges.end(); I != E; ++I)
BP->setEdgeWeight(BB, *I, stayWeight);
}
if (uint32_t numRetEdges = ReturningEdges.size()) {
uint32_t retWeight = RH_NONTAKEN_WEIGHT / numRetEdges;
if (retWeight < MIN_WEIGHT)
retWeight = MIN_WEIGHT;
for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReturningEdges.begin(),
E = ReturningEdges.end(); I != E; ++I) {
BP->setEdgeWeight(BB, *I, retWeight);
}
}
return ReturningEdges.size() > 0;
}