本文整理汇总了C++中Site::nextSite方法的典型用法代码示例。如果您正苦于以下问题:C++ Site::nextSite方法的具体用法?C++ Site::nextSite怎么用?C++ Site::nextSite使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Site
的用法示例。
在下文中一共展示了Site::nextSite方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: strcpy
/*!
Calculate zero momentum nucleon two point functions
*/
void Nuc2pt::calcNucleon(QPropW& quark){
char *cname = "Nuc2pt" ;
char *fname = "calcNucleon(QPropW&)" ;
strcpy(mom,"0 0 0");
if(quark.DoHalfFermion())
HalfFerm=1;
srcdesc[0]=srcdesc[1]=srcdesc[2]=srcdesc[3]=-1 ;
srcdesc[4]=srcdesc[5]=-1 ; // TIZB
switch (quark.SrcType())
{
case WALL:
srcdesc[0] = quark.SourceTime() ;
source="WALL" ;
break ;
case BOX:
srcdesc[0] = quark.BoxSrcStart() ;
srcdesc[1] = quark.BoxSrcEnd() ;
srcdesc[2] = quark.SourceTime() ;
if( quark. BoxSrcUseXYZOffset() ){ // use QPropWArg.{x,y,z} as offset
srcdesc[3] = quark.PointSrcX() ;
srcdesc[4] = quark.PointSrcX() ;
srcdesc[5] = quark.PointSrcX() ;
}
source="BOX" ;
break ;
case POINT:
srcdesc[0] = quark.PointSrcX() ;
srcdesc[1] = quark.PointSrcY() ;
srcdesc[2] = quark.PointSrcZ() ;
srcdesc[3] = quark.SourceTime() ;
source = "POINT" ;
break ;
case GAUSS_GAUGE_INV:
srcdesc[0] = quark.Gauss_N() ;
srcdesc[1] = int(100*quark.Gauss_W()) ;
srcdesc[2] = quark.SourceTime() ;
source = "GAUSS" ;
break ;
default:
ERR.General(cname,fname,"Bad source type\n") ;
}
quark_mass = quark.Mass() ;
WilsonMatrix Q1;
WilsonMatrix Q2;
switch (SnkType)
{
case POINT:
case GAUSS_GAUGE_INV:
{
if(SnkType==GAUSS_GAUGE_INV)
sink="GAUSS" ;
else
sink="POINT" ;
Site s ;
for(s.Begin();s.End();s.nextSite())
{
int t = s.physT() ;
Q1 = quark[s.Index()] ;
if(HalfFerm) Q1.PParProjectSink() ;
Q2 = Q1 ;
calc_nuc_(Q1, Q2, Q1, t) ;
}
plus_parity.GlobalSum() ;
minus_parity.GlobalSum() ;
}
break ;
case WALL:
{
sink="WALL" ;
if(!quark.GFixedSnk())
ERR.General(cname,fname,"Wall sink needs gauge fixing\n") ;
for(int t = 0 ; t<plus_parity.TimeSize();t++)
{
Q1 = quark.WallSinkProp(t) ;
if(HalfFerm) Q1.PParProjectSink() ;
Q2 = Q1 ;
calc_nuc_(Q1, Q2, Q1, t) ;
}
}
break ;
default:
ERR.General(cname,fname,"Unknown Sink Type\n") ;
}
}
示例2: LORENTZs
/*!
Computes
\f[
Trace(seqQ \,
\gamma_{\mu_1} \, \gamma_{\mu_2} \, \gamma_{\mu_3}\,
e^{-i mom . x}\, Quark)
\f]
where \f$\mu\f$ is the member int gamma and ThreeMom mom is
the momentum injected at the operator.
**/
void Nuc3ptCons::InsertOp(CorrFunc* tmp,QPropW& seqQ, QPropW& Quark, int Nmom, ThreeMom* momo)
{
char *fname = "InsertOp()";
VRB.Func(cname, fname);
WilsonMatrix v0, v1, v0_next, v1_next;
WilsonMatrix temp_v0D, temp_v0D_next;
WilsonMatrix temp_v0_1pD, temp_v0_1mD_next;
WilsonMatrix temp_v1_u;
WilsonMatrix temp_v1_next_u;
int shift_t=GJP.TnodeCoor()*GJP.TnodeSites();
int vol= (GJP.VolNodeSites()/GJP.TnodeSites());
int dir = G[G.N()-1];
const int LORENTZs(4);
int lcl_sites[LORENTZs];
lcl_sites[0] = GJP.XnodeSites();
lcl_sites[1] = GJP.YnodeSites();
lcl_sites[2] = GJP.ZnodeSites();
lcl_sites[3] = GJP.TnodeSites();
int lcl_node[LORENTZs];
lcl_node[0] = GJP.XnodeCoor();
lcl_node[1] = GJP.YnodeCoor();
lcl_node[2] = GJP.ZnodeCoor();
lcl_node[3] = GJP.TnodeCoor();
int lcl2glb_offset[LORENTZs];
for (int i = 0; i < LORENTZs; ++i)
lcl2glb_offset[i] = lcl_sites[i] * lcl_node[i];
Lattice& lat = seqQ.AlgLattice();
Matrix *gauge_field = lat.GaugeField();
int ls_glb = GJP.SnodeSites() * GJP.Snodes();
int ls_ini = 0;
int ls_end = ls_glb;
if(GJP.Snodes()==2) {
ls_ini = GJP.SnodeCoor() * GJP.SnodeSites();
ls_end = ( GJP.SnodeCoor() + 1 ) * GJP.SnodeSites();
}
char dummy[50];
Site site;
for(int s=ls_ini;s<ls_end;s++){
//for(int s=0;s<ls_glb;s++){
Quark.RestoreQPropLs(dummy, s);
if(GJP.Snodes()==2) {
seqQ.RestoreQPropLs(dummy, ls_end-1-s+ls_ini);
} else {
seqQ.RestoreQPropLs(dummy, ls_end-1-s);
}
//seqQ.RestoreQPropLs(dummy, ls_glb-1-s);
// This operations are included in QPropWSeqProtU(D)Src.
// When we restore 5d prop the operations are nessesary.
//Multiply by gamma5 and take the dagger to make it in to quark.
for (site.Begin();site.End();site.nextSite()) {
seqQ[site.Index()].gl(-5);
seqQ[site.Index()].hconj();
}
int lcl[LORENTZs];
int lcl_next[LORENTZs]; // Next site along propagation direction
VRB.Clock(cname,fname,"RO\n");
for(lcl[3]=0; lcl[3]<=GJP.TnodeSites()-1; lcl[3]++) {
int t=lcl[3]+shift_t;
for(lcl[0]=0; lcl[0]<=GJP.XnodeSites()-1; lcl[0]++)
for(lcl[1]=0; lcl[1]<=GJP.YnodeSites()-1; lcl[1]++)
for(lcl[2]=0; lcl[2]<=GJP.ZnodeSites()-1; lcl[2]++) {
Float coeff = 1.0;
if( G.N() == 2 ) {
coeff = -1.0;
if(GJP.Snodes()==2) {
if(GJP.SnodeCoor()==1) coeff = -coeff;
} else {
if( s > ls_glb/2 - 1 ) coeff = -coeff;
}
//.........这里部分代码省略.........
示例3: sink_mom
/*!
Non-Zero Momentum nucleon from box sources or point
*/
void Nuc2pt::calcMomNucleon(QPropW& quark, ThreeMom& Mom)
{
char *fname = "Nuc2pt()";
ThreeMom sink_mom(Mom) ;
sink_mom.conj();
//The momentum on the sink has to be complex conjugated!!
// p --> - p
srcdesc[0]=srcdesc[1]=srcdesc[2]=srcdesc[3]=-1 ;
srcdesc[4]=srcdesc[5]=-1 ; // TIZB
switch (quark.SrcType())
{
case BOX:
srcdesc[0] = quark.BoxSrcStart() ;
srcdesc[1] = quark.BoxSrcEnd() ;
srcdesc[2] = quark.SourceTime() ;
source="BOX" ;
if( quark. BoxSrcUseXYZOffset() ){ // use QPropWArg.{x,y,z} as offset
srcdesc[3] = quark.PointSrcX() ;
srcdesc[4] = quark.PointSrcX() ;
srcdesc[5] = quark.PointSrcX() ;
}
break ;
case POINT:
srcdesc[0] = quark.PointSrcX() ;
srcdesc[1] = quark.PointSrcY() ;
srcdesc[2] = quark.PointSrcZ() ;
srcdesc[3] = quark.SourceTime() ;
source="POINT" ;
break ;
case GAUSS_GAUGE_INV:
srcdesc[0] = quark.Gauss_N() ;
srcdesc[1] = int(100*quark.Gauss_W()) ;
srcdesc[2] = quark.SourceTime() ;
source = "GAUSS" ;
break ;
default:
ERR.General(cname,fname,"Bad source type\n") ;
}
quark_mass = quark.Mass() ;
WilsonMatrix Q1;
WilsonMatrix Q2;
WilsonMatrix Q3;
//SnkType=POINT;
sprintf(mom,"%i %i %i", Mom.cmp(0), Mom.cmp(1), Mom.cmp(2) );
Site s ;
for(s.Begin();s.End();s.nextSite())
{
int t = s.physT() ;
Q1 = quark[s.Index()] ;
if(HalfFerm) Q1.PParProjectSink() ;
Q2 = Q1 ;
// here is the sink so I need exp(ipx)
// I did conjugate the momentum at the construction
Q3 = Mom.Fact(s)*Q2 ;
if(HalfFerm) Q3.PParProjectSink() ;
calc_nuc_(Q1, Q2, Q3, t) ;
}
plus_parity.GlobalSum() ;
minus_parity.GlobalSum() ;
}
示例4: Terms
/*!
Computes
\f[
\mbox{Trace}(\mbox{seqQ} \,
\gamma_{\mu_1} \, \gamma_{\mu_2} \, \gamma_{\mu_3}\,
\stackrel{\displaystyle \leftrightarrow}{D}_\nu
\stackrel{\displaystyle \leftrightarrow}{D}_\rho ...
e^{-i mom . x}\, \mbox{Quark})
\f]
where \f$\mu\f$ is the member int gamma and ThreeMom mom is
the momentum injected at the operator.
The string of derivatives gets broken up in strings of forward
and backward hops. For each term the quark and anti-quark are sitting
on different sites and they are connected with the gauge connection U.
The gauge connection U is calculated using the PathOrdPlus routine
given the location of the anti-quark (starting point) and a list
of hops. The Derivative class is used not only to do the break-up
of the string of derivatives in strings of hops, but also to
compute the locations of the quark and the anti-quark and
provide the list of links needed to compute the gauge connection U
for each term.
In order to speed up the code first we compute for all sites
all derivative terms with the derivatives applied on the quark i.e
the anti-quark is not displaced.
These terms are not summed up but they are stored individually in the
DTerms Terms class.
Then I we go again through the all sites and construct the derivatives.
If for a given term the anti-quark is displaced we just have to communicate
a single Complex number from that site. The DTerms class handles all that.
The routine Derivative :: DTermIndx() is the mapping of the derivative
terms to a particular storage order. The DTerm class does not have
to know the storage order. Only the Derivative class knows about it.
NOTE: The quark is at the sink of the Quark propagator
while the anti-quark is at to source of the sequential propagator.
**/
void Nuc3ptStru::InsertOp(CorrFunc& tmp,QPropW& seqQ, QPropW& Quark)
{
char *fname = "InsertOp()";
VRB.Func(cname, fname);
if(seqQ.GFixedSnk() || Quark.GFixedSnk())
ERR.General(cname,fname,"Gauge Fixed sinks!\n") ;
Lattice& lat=seqQ.AlgLattice() ; // The lattice
#ifdef DEBUG
printf("%s:: NDTerms= %i\n",cname,D.NDTerms());
#endif
DTerms Terms(D.NDTerms()); // The derivative terms
Matrix U ;
WilsonMatrix aQ ; // the anti-quark
WilsonMatrix Q ; // quark
WilsonMatrix aQU ; // anti-quark times Gauge path
WilsonMatrix buff ; // Buffer needed for communication
int aq_vec[4]; // Anti-quark location
int q_vec[4] ; // quark location
int *dirs = new int[D.N()];
if(dirs == 0) ERR.Pointer(cname, fname, "dirs");
Site s ;
//first compute all derivatives terms on quarks
for(s.Begin();s.End();s.nextSite()) // Loop over sites
{
aQ=seqQ[s.Index()] ;
// Apply the gamma matrices on the sequential propagator
// We multiply the source indices of the sequential propagator
// which are the anti-quark
for(int mu(0);mu<G.N();mu++)
aQ.gr(G[mu]) ; // Multiply by gamma_mu
// Loop over all derivative terms on the Quark
for(D.Start();D.NotEnd();D.NextQuark())
{
// Calculate the endpoints of the shift
D.CalcEndPoints(aq_vec,q_vec,s);
// The sink indices of the quark propagator are the quark
Q=Quark.GetMatrix(q_vec,buff) ;
D.CalcListOfLinks(dirs);
#ifdef DEBUG
printf("\n%s:: dirs ",cname);
for(int i(0);i<D.N();i++) printf("%i ",dirs[i]);
printf(" aq_vec: ");
for(int i(0);i<4;i++) printf("%i ",aq_vec[i]);
printf(" q_vec: ") ;
for(int i(0);i<4;i++) printf("%i ",q_vec[i]);
#endif
// Start from the anti-quark and move along the path described
// by the list of dirs multiplying all the encountered links
// at the end of the day you should be at the position of the quark
if(D.N()>1)
//.........这里部分代码省略.........