当前位置: 首页>>代码示例>>C++>>正文


C++ ShadingPoint::get_geometric_normal方法代码示例

本文整理汇总了C++中ShadingPoint::get_geometric_normal方法的典型用法代码示例。如果您正苦于以下问题:C++ ShadingPoint::get_geometric_normal方法的具体用法?C++ ShadingPoint::get_geometric_normal怎么用?C++ ShadingPoint::get_geometric_normal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ShadingPoint的用法示例。


在下文中一共展示了ShadingPoint::get_geometric_normal方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assert

DirectLightingIntegrator::DirectLightingIntegrator(
    const ShadingContext&       shading_context,
    const LightSampler&         light_sampler,
    const ShadingPoint&         shading_point,
    const Vector3d&             outgoing,
    const BSDF&                 bsdf,
    const void*                 bsdf_data,
    const int                   bsdf_sampling_modes,
    const int                   light_sampling_modes,
    const size_t                bsdf_sample_count,
    const size_t                light_sample_count,
    const bool                  indirect)
  : m_shading_context(shading_context)
  , m_light_sampler(light_sampler)
  , m_shading_point(shading_point)
  , m_point(shading_point.get_point())
  , m_geometric_normal(shading_point.get_geometric_normal())
  , m_shading_basis(shading_point.get_shading_basis())
  , m_time(shading_point.get_time())
  , m_outgoing(outgoing)
  , m_bsdf(bsdf)
  , m_bsdf_data(bsdf_data)
  , m_bsdf_sampling_modes(bsdf_sampling_modes)
  , m_light_sampling_modes(light_sampling_modes)
  , m_bsdf_sample_count(bsdf_sample_count)
  , m_light_sample_count(light_sample_count)
  , m_indirect(indirect)
{
    assert(is_normalized(outgoing));
}
开发者ID:Tanmay-r,项目名称:appleseed,代码行数:30,代码来源:directlightingintegrator.cpp

示例2: compute_ibl_environment_sampling

void compute_ibl_environment_sampling(
    SamplingContext&        sampling_context,
    const ShadingContext&   shading_context,
    const EnvironmentEDF&   environment_edf,
    const ShadingPoint&     shading_point,
    const Vector3d&         outgoing,
    const BSDF&             bsdf,
    const void*             bsdf_data,
    const int               env_sampling_modes,
    const size_t            bsdf_sample_count,
    const size_t            env_sample_count,
    Spectrum&               radiance)
{
    assert(is_normalized(outgoing));

    const Vector3d& geometric_normal = shading_point.get_geometric_normal();
    const Basis3d& shading_basis = shading_point.get_shading_basis();

    radiance.set(0.0f);

    // todo: if we had a way to know that a BSDF is purely specular, we could
    // immediately return black here since there will be no contribution from
    // such a BSDF.

    sampling_context.split_in_place(2, env_sample_count);

    for (size_t i = 0; i < env_sample_count; ++i)
    {
        // Generate a uniform sample in [0,1)^2.
        const Vector2d s = sampling_context.next_vector2<2>();

        // Sample the environment.
        InputEvaluator input_evaluator(shading_context.get_texture_cache());
        Vector3d incoming;
        Spectrum env_value;
        double env_prob;
        environment_edf.sample(
            input_evaluator,
            s,
            incoming,
            env_value,
            env_prob);

        // Cull samples behind the shading surface.
        assert(is_normalized(incoming));
        const double cos_in = dot(incoming, shading_basis.get_normal());
        if (cos_in < 0.0)
            continue;

        // Discard occluded samples.
        const double transmission =
            shading_context.get_tracer().trace(
                shading_point,
                incoming,
                ShadingRay::ShadowRay);
        if (transmission == 0.0)
            continue;

        // Evaluate the BSDF.
        Spectrum bsdf_value;
        const double bsdf_prob =
            bsdf.evaluate(
                bsdf_data,
                false,                          // not adjoint
                true,                           // multiply by |cos(incoming, normal)|
                geometric_normal,
                shading_basis,
                outgoing,
                incoming,
                env_sampling_modes,
                bsdf_value);
        if (bsdf_prob == 0.0)
            continue;

        // Compute MIS weight.
        const double mis_weight =
            mis_power2(
                env_sample_count * env_prob,
                bsdf_sample_count * bsdf_prob);

        // Add the contribution of this sample to the illumination.
        env_value *= static_cast<float>(transmission / env_prob * mis_weight);
        env_value *= bsdf_value;
        radiance += env_value;
    }

    if (env_sample_count > 1)
        radiance /= static_cast<float>(env_sample_count);
}
开发者ID:Lorenz25,项目名称:appleseed,代码行数:89,代码来源:imagebasedlighting.cpp

示例3: compute_ibl_bsdf_sampling

void compute_ibl_bsdf_sampling(
    SamplingContext&        sampling_context,
    const ShadingContext&   shading_context,
    const EnvironmentEDF&   environment_edf,
    const ShadingPoint&     shading_point,
    const Vector3d&         outgoing,
    const BSDF&             bsdf,
    const void*             bsdf_data,
    const int               bsdf_sampling_modes,
    const size_t            bsdf_sample_count,
    const size_t            env_sample_count,
    Spectrum&               radiance)
{
    assert(is_normalized(outgoing));

    const Vector3d& geometric_normal = shading_point.get_geometric_normal();
    const Basis3d& shading_basis = shading_point.get_shading_basis();

    radiance.set(0.0f);

    for (size_t i = 0; i < bsdf_sample_count; ++i)
    {
        // Sample the BSDF.
        // todo: rendering will be incorrect if the BSDF value returned by the sample() method
        // includes the contribution of a specular component since these are explicitly rejected
        // afterward. We need a mechanism to indicate that we want the contribution of some of
        // the components only.
        Vector3d incoming;
        Spectrum bsdf_value;
        double bsdf_prob;
        const BSDF::Mode bsdf_mode =
            bsdf.sample(
                sampling_context,
                bsdf_data,
                false,              // not adjoint
                true,               // multiply by |cos(incoming, normal)|
                geometric_normal,
                shading_basis,
                outgoing,
                incoming,
                bsdf_value,
                bsdf_prob);

        // Filter scattering modes.
        if (!(bsdf_sampling_modes & bsdf_mode))
            return;

        // Discard occluded samples.
        const double transmission =
            shading_context.get_tracer().trace(
                shading_point,
                incoming,
                ShadingRay::ShadowRay);
        if (transmission == 0.0)
            continue;

        // Evaluate the environment's EDF.
        InputEvaluator input_evaluator(shading_context.get_texture_cache());
        Spectrum env_value;
        double env_prob;
        environment_edf.evaluate(
            input_evaluator,
            incoming,
            env_value,
            env_prob);

        // Apply all weights, including MIS weight.
        if (bsdf_mode == BSDF::Specular)
            env_value *= static_cast<float>(transmission);
        else
        {
            const double mis_weight =
                mis_power2(
                    bsdf_sample_count * bsdf_prob,
                    env_sample_count * env_prob);
            env_value *= static_cast<float>(transmission / bsdf_prob * mis_weight);
        }

        // Add the contribution of this sample to the illumination.
        env_value *= bsdf_value;
        radiance += env_value;
    }

    if (bsdf_sample_count > 1)
        radiance /= static_cast<float>(bsdf_sample_count);
}
开发者ID:Lorenz25,项目名称:appleseed,代码行数:86,代码来源:imagebasedlighting.cpp

示例4: evaluate

void DiagnosticSurfaceShader::evaluate(
    SamplingContext&        sampling_context,
    const PixelContext&     pixel_context,
    const ShadingContext&   shading_context,
    const ShadingPoint&     shading_point,
    ShadingResult&          shading_result) const
{
    switch (m_shading_mode)
    {
      case Color:
        {
            shading_result.set_main_to_opaque_pink_linear_rgba();

            const Material* material = shading_point.get_material();
            if (material)
            {
                const Material::RenderData& material_data = material->get_render_data();

#ifdef APPLESEED_WITH_OSL
                // Execute the OSL shader if there is one.
                if (material_data.m_shader_group)
                {
                    shading_context.execute_osl_shading(
                        *material_data.m_shader_group,
                        shading_point);
                }
#endif

                if (material_data.m_bsdf)
                {
                    InputEvaluator input_evaluator(shading_context.get_texture_cache());
                    material_data.m_bsdf->evaluate_inputs(
                        shading_context,
                        input_evaluator,
                        shading_point);

                    const Vector3d direction = -normalize(shading_point.get_ray().m_dir);
                    material_data.m_bsdf->evaluate(
                        input_evaluator.data(),
                        false,
                        false,
                        shading_point.get_geometric_normal(),
                        shading_point.get_shading_basis(),
                        direction,
                        direction,
                        ScatteringMode::All,
                        shading_result.m_main.m_color);

                    shading_result.m_color_space = ColorSpaceSpectral;
                }
            }
        }
        break;

      case Coverage:
        shading_result.set_main_to_linear_rgb(Color3f(1.0f));
        break;

      case Barycentric:
        shading_result.set_main_to_linear_rgb(
            vector2_to_color(shading_point.get_bary()));
        break;

      case UV:
        shading_result.set_main_to_linear_rgb(
            uvs_to_color(shading_point.get_uv(0)));
        break;

      case Tangent:
      case Bitangent:
      case ShadingNormal:
        {
#ifdef APPLESEED_WITH_OSL
            const Material* material = shading_point.get_material();
            if (material)
            {
                const Material::RenderData& material_data = material->get_render_data();

                // Execute the OSL shader if there is one.
                if (material_data.m_shader_group)
                {
                    sampling_context.split_in_place(2, 1);
                    shading_context.execute_osl_bump(
                        *material_data.m_shader_group,
                        shading_point,
                        sampling_context.next_vector2<2>());
                }
            }
#endif

            const Vector3d v =
                m_shading_mode == ShadingNormal ? shading_point.get_shading_basis().get_normal() :
                m_shading_mode == Tangent ? shading_point.get_shading_basis().get_tangent_u() :
                shading_point.get_shading_basis().get_tangent_v();

            shading_result.set_main_to_linear_rgb(vector3_to_color(v));
        }
        break;

      case GeometricNormal:
//.........这里部分代码省略.........
开发者ID:johnhaddon,项目名称:appleseed,代码行数:101,代码来源:diagnosticsurfaceshader.cpp


注:本文中的ShadingPoint::get_geometric_normal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。