当前位置: 首页>>代码示例>>C++>>正文


C++ SList::size方法代码示例

本文整理汇总了C++中SList::size方法的典型用法代码示例。如果您正苦于以下问题:C++ SList::size方法的具体用法?C++ SList::size怎么用?C++ SList::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SList的用法示例。


在下文中一共展示了SList::size方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: unify

void Annotate::unify(SList dst, SCList src) {

	const QString m("Merge");
	for (int i = 0; i < dst.size(); ++i) {
		if (dst.at(i) == m)
			dst[i] = src.at(i);
	}
}
开发者ID:ChunHungLiu,项目名称:qgit,代码行数:8,代码来源:annotate.cpp

示例2: StealHalf

std::size_t Processer::StealHalf(Processer & other)
{
    std::size_t runnable_task_count = runnable_list_.size();
    SList<Task> tasks = runnable_list_.pop_back((runnable_task_count + 1) / 2);
    std::size_t c = tasks.size();
    DebugPrint(dbg_scheduler, "proc[%u] steal proc[%u] work returns %d.",
            other.id_, id_, (int)c);
    if (!c) return 0;
    other.runnable_list_.push(std::move(tasks));
    return c;
}
开发者ID:HunterChen,项目名称:libgo,代码行数:11,代码来源:processer.cpp

示例3: main

int main() {
	SList<int> *intList = new SList<int>;

	delete intList;

	SList<string> facultyList;

	facultyList.insert("unknown");
	facultyList.insert("erdly");
	facultyList.insert("sung");
	facultyList.insert("olson");
	facultyList.insert("zander");
	facultyList.insert("berger");
	facultyList.insert("cioch");
	facultyList.insert("fukuda");
	facultyList.insert("stiber");
	facultyList.insert("jackels");

	cout << "#faculty members: " << facultyList.size() << endl;
	facultyList.show();
	cout << endl;

	cout << "deleting unknown" << endl;
	facultyList.remove("unknown");
	cout << "#faculty members: " << facultyList.size() << endl;
	facultyList.show();
	cout << endl;

	cout << "finding stiber = " << facultyList.find("stiber") << endl;
	cout << endl;

	cout << "create another list" << endl;
	SList<string> studentList = facultyList;
	cout << "finding stiber = " << facultyList.find("stiber") << endl;
	cout << "#faculty members: " << facultyList.size() << endl;
	cout << endl;

	cout << "cost of find = " << facultyList.getCost() << endl;
}
开发者ID:baribarton,项目名称:CSS-342,代码行数:39,代码来源:driver.cpp

示例4: removeSinkArcs

void UpwardPlanRep::removeSinkArcs(SList<adjEntry> &crossedEdges) {

	if (crossedEdges.size() == 2)
		return;


	SListIterator<adjEntry> itPred = crossedEdges.begin(), it;
	for(it = itPred.succ(); it.valid() && it.succ().valid(); ++it)	{
		adjEntry adj = *it;
		if (m_isSinkArc[adj->theEdge()]) {
			m_Gamma.joinFaces(adj->theEdge());
			crossedEdges.delSucc(itPred);
			it = itPred;
			continue;
		}
		itPred = it;
	}
	m_Gamma.setExternalFace(m_Gamma.rightFace(extFaceHandle));
}
开发者ID:ogdf,项目名称:ogdf,代码行数:19,代码来源:UpwardPlanRep.cpp

示例5: heuristicInitialUpperBound

double MaxCPlanarMaster::heuristicInitialUpperBound() {

	double upperBoundO = m_G->numberOfEdges();
	double upperBoundC = 0.0;

	// Checking graph for planarity
	// If \a m_G is planar \a upperBound is simply set to the number of edges of \a m_G.
	GraphCopy gc(*m_G);
	BoyerMyrvold bm;
	if (bm.isPlanarDestructive(gc)) upperBoundO = m_G->numberOfEdges();
	else {

		// Extract all possible Kuratowski subdivisions.
		// Compare extracted subdivisions and try to obtain the
		// maximum number of independent subdivisions, i.e. a maximum
		// independent set in the overlap graph.
		// Due to the complexity of this task, we only check if
		// a subdivision (sd) does overlap with a subdivision for which
		// we already decreased the upper bound. In this case,
		// upperBound stays the same.

		upperBoundO = m_G->numberOfEdges();

		GraphCopy *gCopy = new GraphCopy(*m_G);
		SList<KuratowskiWrapper> subDivs;

		bm.planarEmbedDestructive(*gCopy,subDivs,-1);
		//we store a representative and its status for each edge
		//note that there might be an overlap, in that case
		//we keep a representative with status false if existing
		//to check if we can safely reduce the upper bound (ub)
		EdgeArray<edge> subRep(*gCopy, nullptr); //store representing edge for sd
		EdgeArray<bool> coverStatus(*gCopy, false); //false means not covered by ub decrease yet

		//runtime for the check: we run over all edges in all subdivisions
		if (subDivs.size() > 0) { // At least one edge has to be deleted to obtain planarity.

			// We run over all subdivisions and check for overlaps
			for(const KuratowskiWrapper &kw : subDivs)
			{
				bool covered = false; //may the sd already be covered by a decrease in ub
				//for each edge we set the representative to be the first edge of sd
				edge sdRep = kw.edgeList.front(); //sd is always non-empty
				//we check if any of the edges in sd were already visited and if
				//the representative has status false, in this case, we are not
				//allowed to decrease the ub
				for (edge e : kw.edgeList)
				{
					//we already encountered this edge
					if (subRep[e] != nullptr)
					{
						//and decreased ub for an enclosing sd
						//(could we just break in the if case?)
						if (coverStatus[subRep[e]])
							covered = true;
						else
							subRep[e] = sdRep; //might need an update
					}
					else
						subRep[e] = sdRep;
				}
				if (!covered)
				{
					coverStatus[sdRep] = true;
					upperBoundO--;
				}//not yet covered, independent
			}
		}
		delete gCopy;
	}

	/*
	 * Heuristic can be improved by checking, how many additional C-edges have to be added at least.
	 * A first simple approach is the following:
	 * Since the Graph has to be completely connected in the end, all chunks have to be connected.
	 * Thus the numbers of chunks minus 1 summed up over all clusters is a trivial lower bound.

	* We perform a bottom-up search through the cluster-tree, each time checking the cluster
	 * induced Graph for connectivity. If the Graph is not connected, the number of chunks -1 is added to
	 * a counter. For "inner" clusters we have to collapse all child clusters to one node,
	 * in order to obtain a correct result.
	 */

	GraphCopy gcc(*m_G);
	cluster c = m_C->rootCluster();
	clusterConnection(c, gcc, upperBoundC);

	// Return-value results from the max. number of O-edges that might be contained
	// in an optimal solution minus \a epsilon times the number of C-edges that have
	// to be added at least in any optimal solution. (\a upperBoundC is non-positive)
	return (upperBoundO + upperBoundC);
}
开发者ID:lncosie,项目名称:ogdf,代码行数:92,代码来源:MaxCPlanar_Master.cpp

示例6: Run

uint32_t Scheduler::Run()
{
    ThreadLocalInfo& info = GetLocalInfo();
    info.current_task = NULL;
    uint32_t do_max_count = runnale_task_count_;
    uint32_t do_count = 0;

    Debug("Run --------------------------");

    // 每次Run执行的协程数量不能多于当前runnable协程数量
    // 以防wait状态的协程得不到执行。
    while (do_count < do_max_count)
    {
        uint32_t cnt = std::max((uint32_t)1, std::min(
                    do_max_count / GetOptions().chunk_count,
                    GetOptions().max_chunk_size));
        Debug("want pop %u tasks.", cnt);
        SList<Task> slist = run_task_.pop(cnt);
        Debug("really pop %u tasks.", cnt);
        if (slist.empty()) break;

        SList<Task>::iterator it = slist.begin();
        while (it != slist.end())
        {
            Task* tk = &*it;
            info.current_task = tk;
            Debug("enter task(%llu)", tk->id_);
            swapcontext(&info.scheduler, &tk->ctx_);
            ++do_count;
            Debug("exit task(%llu) state=%d", tk->id_, tk->state_);
            info.current_task = NULL;

            switch (tk->state_) {
                case TaskState::runnable:
                    ++it;
                    break;

                case TaskState::io_block:
                case TaskState::sync_block:
                    --runnale_task_count_;
                    it = slist.erase(it);
                    wait_task_.push(tk);
                    break;

                case TaskState::done:
                default:
                    --task_count_;
                    --runnale_task_count_;
                    it = slist.erase(it);
                    delete tk;
                    break;
            }
        }
        Debug("push %d task return to runnable list", slist.size());
        run_task_.push(slist);
    }

    static thread_local epoll_event evs[1024];
    int n = epoll_wait(epoll_fd, evs, 1024, 1);
    Debug("do_count=%u, do epoll event, n = %d", do_count, n);
    for (int i = 0; i < n; ++i)
    {
        Task* tk = (Task*)evs[i].data.ptr;
        if (tk->unlink())
            AddTask(tk);
    }

    return do_count;
}
开发者ID:nevermore22,项目名称:cpp_features,代码行数:69,代码来源:scheduler.cpp

示例7: Run

uint32_t Processer::Run(ThreadLocalInfo &info, uint32_t &done_count)
{
    info.current_task = NULL;
    done_count = 0;
    uint32_t c = 0;
    SList<Task> slist = runnable_list_.pop_all();
    uint32_t do_count = slist.size();

    DebugPrint(dbg_scheduler, "Run [Proc(%d) do_count:%u] --------------------------", id_, do_count);

    SList<Task>::iterator it = slist.begin();
    for (; it != slist.end(); ++c)
    {
        Task* tk = &*it;
        info.current_task = tk;
        tk->state_ = TaskState::runnable;
        DebugPrint(dbg_switch, "enter task(%s)", tk->DebugInfo());
        RestoreStack(tk);
        int ret = swapcontext(&info.scheduler, &tk->ctx_);
        if (ret) {
            fprintf(stderr, "swapcontext error:%s\n", strerror(errno));
            runnable_list_.push(tk);
            ThrowError(eCoErrorCode::ec_swapcontext_failed);
        }
        DebugPrint(dbg_switch, "leave task(%s) state=%d", tk->DebugInfo(), tk->state_);
        info.current_task = NULL;

        switch (tk->state_) {
            case TaskState::runnable:
                ++it;
                break;

            case TaskState::io_block:
                it = slist.erase(it);
                g_Scheduler.io_wait_.SchedulerSwitch(tk);
                break;

            case TaskState::sleep:
                it = slist.erase(it);
                g_Scheduler.sleep_wait_.SchedulerSwitch(tk);
                break;

            case TaskState::sys_block:
            case TaskState::user_block:
                {
                    if (tk->block_) {
                        it = slist.erase(it);
                        if (!tk->block_->AddWaitTask(tk))
                            runnable_list_.push(tk);
                        tk->block_ = NULL;
                    } else {
                        std::unique_lock<LFLock> lock(g_Scheduler.user_wait_lock_);
                        auto &zone = g_Scheduler.user_wait_tasks_[tk->user_wait_type_];
                        auto &wait_pair = zone[tk->user_wait_id_];
                        auto &task_queue = wait_pair.second;
                        if (wait_pair.first) {
                            --wait_pair.first;
                            tk->state_ = TaskState::runnable;
                            ++it;
                        } else {
                            it = slist.erase(it);
                            task_queue.push(tk);
                        }
                        g_Scheduler.ClearWaitPairWithoutLock(tk->user_wait_type_,
                                tk->user_wait_id_, zone, wait_pair);
                    }
                }
                break;

            case TaskState::done:
            default:
                --task_count_;
                ++done_count;
                it = slist.erase(it);
                DebugPrint(dbg_task, "task(%s) done.", tk->DebugInfo());
                if (tk->eptr_) {
                    std::exception_ptr ep = tk->eptr_;
                    runnable_list_.push(slist);
                    tk->DecrementRef();
                    std::rethrow_exception(ep);
                } else
                    tk->DecrementRef();
                break;
        }
    }
    if (do_count)
        runnable_list_.push(slist);

    return c;
}
开发者ID:Gd58,项目名称:cpp_features,代码行数:90,代码来源:processer.cpp


注:本文中的SList::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。