当前位置: 首页>>代码示例>>C++>>正文


C++ PositionalAudioStream::getPosition方法代码示例

本文整理汇总了C++中PositionalAudioStream::getPosition方法的典型用法代码示例。如果您正苦于以下问题:C++ PositionalAudioStream::getPosition方法的具体用法?C++ PositionalAudioStream::getPosition怎么用?C++ PositionalAudioStream::getPosition使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PositionalAudioStream的用法示例。


在下文中一共展示了PositionalAudioStream::getPosition方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computeGain

float computeGain(const AudioMixerClientData& listenerNodeData, const AvatarAudioStream& listeningNodeStream,
        const PositionalAudioStream& streamToAdd, const glm::vec3& relativePosition, bool isEcho) {
    float gain = 1.0f;

    // injector: apply attenuation
    if (streamToAdd.getType() == PositionalAudioStream::Injector) {
        gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();

    // avatar: apply fixed off-axis attenuation to make them quieter as they turn away
    } else if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
        glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;

        // source directivity is based on angle of emission, in local coordinates
        glm::vec3 direction = glm::normalize(rotatedListenerPosition);
        float angleOfDelivery = fastAcosf(glm::clamp(-direction.z, -1.0f, 1.0f));   // UNIT_NEG_Z is "forward"

        const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
        const float OFF_AXIS_ATTENUATION_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
        float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION + (angleOfDelivery * (OFF_AXIS_ATTENUATION_STEP / PI_OVER_TWO));

        gain *= offAxisCoefficient;

        // apply master gain, only to avatars
        gain *= listenerNodeData.getMasterAvatarGain();
    }

    auto& audioZones = AudioMixer::getAudioZones();
    auto& zoneSettings = AudioMixer::getZoneSettings();

    // find distance attenuation coefficient
    float attenuationPerDoublingInDistance = AudioMixer::getAttenuationPerDoublingInDistance();
    for (int i = 0; i < zoneSettings.length(); ++i) {
        if (audioZones[zoneSettings[i].source].contains(streamToAdd.getPosition()) &&
            audioZones[zoneSettings[i].listener].contains(listeningNodeStream.getPosition())) {
            attenuationPerDoublingInDistance = zoneSettings[i].coefficient;
            break;
        }
    }

    // distance attenuation
    const float ATTENUATION_START_DISTANCE = 1.0f;
    float distance = glm::length(relativePosition);
    assert(ATTENUATION_START_DISTANCE > EPSILON);
    if (distance >= ATTENUATION_START_DISTANCE) {

        // translate the zone setting to gain per log2(distance)
        float g = 1.0f - attenuationPerDoublingInDistance;
        g = glm::clamp(g, EPSILON, 1.0f);

        // calculate the distance coefficient using the distance to this node
        float distanceCoefficient = fastExp2f(fastLog2f(g) * fastLog2f(distance/ATTENUATION_START_DISTANCE));

        // multiply the current attenuation coefficient by the distance coefficient
        gain *= distanceCoefficient;
    }

    return gain;
}
开发者ID:howard-stearns,项目名称:hifi,代码行数:58,代码来源:AudioMixerSlave.cpp

示例2: gainForSource

float AudioMixer::gainForSource(const PositionalAudioStream& streamToAdd,
                                const AvatarAudioStream& listeningNodeStream, const glm::vec3& relativePosition, bool isEcho) {
    float gain = 1.0f;

    float distanceBetween = glm::length(relativePosition);

    if (distanceBetween < EPSILON) {
        distanceBetween = EPSILON;
    }

    if (streamToAdd.getType() == PositionalAudioStream::Injector) {
        gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
    }

    if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
        //  source is another avatar, apply fixed off-axis attenuation to make them quieter as they turn away from listener
        glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;

        float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
                                           glm::normalize(rotatedListenerPosition));

        const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
        const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;

        float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
        (OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / PI_OVER_TWO));

        // multiply the current attenuation coefficient by the calculated off axis coefficient
        gain *= offAxisCoefficient;
    }

    float attenuationPerDoublingInDistance = _attenuationPerDoublingInDistance;
    for (int i = 0; i < _zonesSettings.length(); ++i) {
        if (_audioZones[_zonesSettings[i].source].contains(streamToAdd.getPosition()) &&
            _audioZones[_zonesSettings[i].listener].contains(listeningNodeStream.getPosition())) {
            attenuationPerDoublingInDistance = _zonesSettings[i].coefficient;
            break;
        }
    }

    if (distanceBetween >= ATTENUATION_BEGINS_AT_DISTANCE) {

        // translate the zone setting to gain per log2(distance)
        float g = 1.0f - attenuationPerDoublingInDistance;
        g = (g < EPSILON) ? EPSILON : g;
        g = (g > 1.0f) ? 1.0f : g;

        // calculate the distance coefficient using the distance to this node
        float distanceCoefficient = exp2f(log2f(g) * log2f(distanceBetween/ATTENUATION_BEGINS_AT_DISTANCE));

        // multiply the current attenuation coefficient by the distance coefficient
        gain *= distanceCoefficient;
    }

    return gain;
}
开发者ID:ChristophHaag,项目名称:hifi,代码行数:56,代码来源:AudioMixer.cpp

示例3: approximateGain

float approximateGain(const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd) {
    float gain = 1.0f;

    // injector: apply attenuation
    if (streamToAdd.getType() == PositionalAudioStream::Injector) {
        gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
    }

    // avatar: skip attenuation - it is too costly to approximate

    // distance attenuation: approximate, ignore zone-specific attenuations
    glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();
    float distance = glm::length(relativePosition);
    return gain / distance;

    // avatar: skip master gain - it is constant for all streams
}
开发者ID:Menithal,项目名称:hifi,代码行数:17,代码来源:AudioMixerSlave.cpp

示例4: addStream

void AudioMixerSlave::addStream(AudioMixerClientData& listenerNodeData, const QUuid& sourceNodeID,
        const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd,
        bool throttle) {
    ++stats.totalMixes;

    // to reduce artifacts we call the HRTF functor for every source, even if throttled or silent
    // this ensures the correct tail from last mixed block and the correct spatialization of next first block

    // check if this is a server echo of a source back to itself
    bool isEcho = (&streamToAdd == &listeningNodeStream);

    glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();

    float distance = glm::max(glm::length(relativePosition), EPSILON);
    float gain = computeGain(listenerNodeData, listeningNodeStream, streamToAdd, relativePosition, isEcho);
    float azimuth = isEcho ? 0.0f : computeAzimuth(listeningNodeStream, listeningNodeStream, relativePosition);
    const int HRTF_DATASET_INDEX = 1;

    if (!streamToAdd.lastPopSucceeded()) {
        bool forceSilentBlock = true;

        if (!streamToAdd.getLastPopOutput().isNull()) {
            bool isInjector = dynamic_cast<const InjectedAudioStream*>(&streamToAdd);

            // in an injector, just go silent - the injector has likely ended
            // in other inputs (microphone, &c.), repeat with fade to avoid the harsh jump to silence
            if (!isInjector) {
                // calculate its fade factor, which depends on how many times it's already been repeated.
                float fadeFactor = calculateRepeatedFrameFadeFactor(streamToAdd.getConsecutiveNotMixedCount() - 1);
                if (fadeFactor > 0.0f) {
                    // apply the fadeFactor to the gain
                    gain *= fadeFactor;
                    forceSilentBlock = false;
                }
            }
        }

        if (forceSilentBlock) {
            // call renderSilent with a forced silent block to reduce artifacts
            // (this is not done for stereo streams since they do not go through the HRTF)
            if (!streamToAdd.isStereo() && !isEcho) {
                // get the existing listener-source HRTF object, or create a new one
                auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());

                static int16_t silentMonoBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL] = {};
                hrtf.renderSilent(silentMonoBlock, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
                                  AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);

                ++stats.hrtfSilentRenders;
            }

            return;
        }
    }

    // grab the stream from the ring buffer
    AudioRingBuffer::ConstIterator streamPopOutput = streamToAdd.getLastPopOutput();

    // stereo sources are not passed through HRTF
    if (streamToAdd.isStereo()) {
        for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; ++i) {
            _mixSamples[i] += float(streamPopOutput[i] * gain / AudioConstants::MAX_SAMPLE_VALUE);
        }

        ++stats.manualStereoMixes;
        return;
    }

    // echo sources are not passed through HRTF
    if (isEcho) {
        for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; i += 2) {
            auto monoSample = float(streamPopOutput[i / 2] * gain / AudioConstants::MAX_SAMPLE_VALUE);
            _mixSamples[i] += monoSample;
            _mixSamples[i + 1] += monoSample;
        }

        ++stats.manualEchoMixes;
        return;
    }

    // get the existing listener-source HRTF object, or create a new one
    auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());

    streamPopOutput.readSamples(_bufferSamples, AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);

    if (streamToAdd.getLastPopOutputLoudness() == 0.0f) {
        // call renderSilent to reduce artifacts
        hrtf.renderSilent(_bufferSamples, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
                          AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);

        ++stats.hrtfSilentRenders;
        return;
    }

    if (throttle) {
        // call renderSilent with actual frame data and a gain of 0.0f to reduce artifacts
        hrtf.renderSilent(_bufferSamples, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, 0.0f,
                          AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);

        ++stats.hrtfThrottleRenders;
//.........这里部分代码省略.........
开发者ID:howard-stearns,项目名称:hifi,代码行数:101,代码来源:AudioMixerSlave.cpp

示例5: computeGain

float computeGain(float masterListenerGain, const AvatarAudioStream& listeningNodeStream,
        const PositionalAudioStream& streamToAdd, const glm::vec3& relativePosition, float distance, bool isEcho) {
    float gain = 1.0f;

    // injector: apply attenuation
    if (streamToAdd.getType() == PositionalAudioStream::Injector) {
        gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();

    // avatar: apply fixed off-axis attenuation to make them quieter as they turn away
    } else if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
        glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;

        // source directivity is based on angle of emission, in local coordinates
        glm::vec3 direction = glm::normalize(rotatedListenerPosition);
        float angleOfDelivery = fastAcosf(glm::clamp(-direction.z, -1.0f, 1.0f));   // UNIT_NEG_Z is "forward"

        const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
        const float OFF_AXIS_ATTENUATION_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
        float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION + (angleOfDelivery * (OFF_AXIS_ATTENUATION_STEP / PI_OVER_TWO));

        gain *= offAxisCoefficient;

        // apply master gain, only to avatars
        gain *= masterListenerGain;
    }

    auto& audioZones = AudioMixer::getAudioZones();
    auto& zoneSettings = AudioMixer::getZoneSettings();

    // find distance attenuation coefficient
    float attenuationPerDoublingInDistance = AudioMixer::getAttenuationPerDoublingInDistance();
    for (const auto& settings : zoneSettings) {
        if (audioZones[settings.source].area.contains(streamToAdd.getPosition()) &&
            audioZones[settings.listener].area.contains(listeningNodeStream.getPosition())) {
            attenuationPerDoublingInDistance = settings.coefficient;
            break;
        }
    }

    if (attenuationPerDoublingInDistance < 0.0f) {
        // translate a negative zone setting to distance limit
        const float MIN_DISTANCE_LIMIT = ATTN_DISTANCE_REF + 1.0f;  // silent after 1m
        float distanceLimit = std::max(-attenuationPerDoublingInDistance, MIN_DISTANCE_LIMIT);

        // calculate the LINEAR attenuation using the distance to this node
        // reference attenuation of 0dB at distance = ATTN_DISTANCE_REF
        float d = distance - ATTN_DISTANCE_REF;
        gain *= std::max(1.0f - d / (distanceLimit - ATTN_DISTANCE_REF), 0.0f);
        gain = std::min(gain, ATTN_GAIN_MAX);

    } else {
        // translate a positive zone setting to gain per log2(distance)
        const float MIN_ATTENUATION_COEFFICIENT = 0.001f;   // -60dB per log2(distance)
        float g = glm::clamp(1.0f - attenuationPerDoublingInDistance, MIN_ATTENUATION_COEFFICIENT, 1.0f);

        // calculate the LOGARITHMIC attenuation using the distance to this node
        // reference attenuation of 0dB at distance = ATTN_DISTANCE_REF
        float d = (1.0f / ATTN_DISTANCE_REF) * std::max(distance, HRTF_NEARFIELD_MIN);
        gain *= fastExp2f(fastLog2f(g) * fastLog2f(d));
        gain = std::min(gain, ATTN_GAIN_MAX);
    }

    return gain;
}
开发者ID:Menithal,项目名称:hifi,代码行数:64,代码来源:AudioMixerSlave.cpp

示例6: addStreamToMixForListeningNodeWithStream

void AudioMixer::addStreamToMixForListeningNodeWithStream(AudioMixerClientData& listenerNodeData,
                                                          const PositionalAudioStream& streamToAdd,
                                                          const QUuid& sourceNodeID,
                                                          const AvatarAudioStream& listeningNodeStream) {


    // to reduce artifacts we calculate the gain and azimuth for every source for this listener
    // even if we are not going to end up mixing in this source

    ++_totalMixes;

    // this ensures that the tail of any previously mixed audio or the first block of new audio sounds correct

    // check if this is a server echo of a source back to itself
    bool isEcho = (&streamToAdd == &listeningNodeStream);

    glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();

    // figure out the distance between source and listener
    float distance = glm::max(glm::length(relativePosition), EPSILON);

    // figure out the gain for this source at the listener
    float gain = gainForSource(streamToAdd, listeningNodeStream, relativePosition, isEcho);

    // figure out the azimuth to this source at the listener
    float azimuth = isEcho ? 0.0f : azimuthForSource(streamToAdd, listeningNodeStream, relativePosition);

    float repeatedFrameFadeFactor = 1.0f;

    static const int HRTF_DATASET_INDEX = 1;

    if (!streamToAdd.lastPopSucceeded()) {
        bool forceSilentBlock = true;

        if (_streamSettings._repetitionWithFade && !streamToAdd.getLastPopOutput().isNull()) {

            // reptition with fade is enabled, and we do have a valid previous frame to repeat
            // so we mix the previously-mixed block

            // this is preferable to not mixing it at all to avoid the harsh jump to silence

            // we'll repeat the last block until it has a block to mix
            // and we'll gradually fade that repeated block into silence.

            // calculate its fade factor, which depends on how many times it's already been repeated.

            repeatedFrameFadeFactor = calculateRepeatedFrameFadeFactor(streamToAdd.getConsecutiveNotMixedCount() - 1);
            if (repeatedFrameFadeFactor > 0.0f) {
                // apply the repeatedFrameFadeFactor to the gain
                gain *= repeatedFrameFadeFactor;

                forceSilentBlock = false;
            }
        }

        if (forceSilentBlock) {
            // we're deciding not to repeat either since we've already done it enough times or repetition with fade is disabled
            // in this case we will call renderSilent with a forced silent block
            // this ensures the correct tail from the previously mixed block and the correct spatialization of first block
            // of any upcoming audio

            if (!streamToAdd.isStereo() && !isEcho) {
                // get the existing listener-source HRTF object, or create a new one
                auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());

                // this is not done for stereo streams since they do not go through the HRTF
                static int16_t silentMonoBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL] = {};
                hrtf.renderSilent(silentMonoBlock, _mixedSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
                                  AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);

                ++_hrtfSilentRenders;;
            }

            return;
        }
    }

    // grab the stream from the ring buffer
    AudioRingBuffer::ConstIterator streamPopOutput = streamToAdd.getLastPopOutput();

    if (streamToAdd.isStereo() || isEcho) {
        // this is a stereo source or server echo so we do not pass it through the HRTF
        // simply apply our calculated gain to each sample
        if (streamToAdd.isStereo()) {
            for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; ++i) {
                _mixedSamples[i] += float(streamPopOutput[i] * gain / AudioConstants::MAX_SAMPLE_VALUE);
            }

            ++_manualStereoMixes;
        } else {
            for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; i += 2) {
                auto monoSample = float(streamPopOutput[i / 2] * gain / AudioConstants::MAX_SAMPLE_VALUE);
                _mixedSamples[i] += monoSample;
                _mixedSamples[i + 1] += monoSample;
            }

            ++_manualEchoMixes;
        }

        return;
//.........这里部分代码省略.........
开发者ID:ChristophHaag,项目名称:hifi,代码行数:101,代码来源:AudioMixer.cpp


注:本文中的PositionalAudioStream::getPosition方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。