本文整理汇总了C++中Polygon2::push_back方法的典型用法代码示例。如果您正苦于以下问题:C++ Polygon2::push_back方法的具体用法?C++ Polygon2::push_back怎么用?C++ Polygon2::push_back使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Polygon2
的用法示例。
在下文中一共展示了Polygon2::push_back方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: testTrickyIntersections
void SpriteTests::testTrickyIntersections()
{
AutoreleasePool::begin();
Sprite* space_ship = new Sprite(new MockView);
space_ship->setPosition(Vector2(0.0f, 0.0f));
// Obstacle
Polygon2 points;
points.push_back(Vector2(36.714285714286f, 29.857142857143f));
points.push_back(Vector2(40.285714285714f, 29.714285714286f));
points.push_back(Vector2(40.142857142857f, 1.0f));
points.push_back(Vector2(30.0f, 0.85714285714286f));
points.push_back(Vector2(30.428571428571f, 13.285714285714f));
Sprite* obstacle = new Sprite(new MockView(points));
CPTAssert(!space_ship->collide(obstacle, t, dt));
CPTAssert(!obstacle->collide(space_ship, t, dt));
space_ship->setPosition(Vector2(9.7f, -2.7f));
CPTAssert(!space_ship->collide(obstacle, t, dt));
CPTAssert(!obstacle->collide(space_ship, t, dt));
space_ship->setPosition(Vector2(11.9f, 7.71f));
CPTAssert(!space_ship->collide(obstacle, t, dt));
CPTAssert(!obstacle->collide(space_ship, t, dt));
space_ship->setPosition(Vector2(11.99f, 7.89f));
CPTAssert(!space_ship->collide(obstacle, t, dt));
CPTAssert(!obstacle->collide(space_ship, t, dt));
Group* g = new Group;
g->addKid(obstacle);
ShapeGroup* group = new ShapeGroup(g->iterator());
CPTAssert(!space_ship->collide(group, t, dt));
CPTAssert(!group->collide(space_ship, t, dt));
space_ship->setPosition(Vector2(9.7f, -2.7f));
CPTAssert(!space_ship->collide(group, t, dt));
CPTAssert(!group->collide(space_ship, t, dt));
space_ship->setPosition(Vector2(11.9f, 7.71f));
CPTAssert(!space_ship->collide(group, t, dt));
CPTAssert(!group->collide(space_ship, t, dt));
g->release();
group->release();
space_ship->release();
obstacle->release();
AutoreleasePool::end();
}
示例2: pathFrom
static bool pathFrom(const Graph& g, Vertex t, const Vertices& p, Polygon2& path)
{
while (t != p[t]) {
path.push_back(g[t]);
t = p[t];
}
path.push_back(g[t]);
return true;
}
示例3:
TEST_CASE_F(ComputePolygonOrientation_GivenLowestLeftmostTriangleIsDegenerate_ReturnsCorrectOrientation, Fixture)
{
Polygon2 polygon;
polygon.push_back(Vector2Type(0.0, 1.0));
polygon.push_back(Vector2Type(1.0, 1.0));
polygon.push_back(Vector2Type(0.0, 0.0));
polygon.push_back(Vector2Type(0.0, 0.0));
TriangulatorType triangulator;
const TriangulatorType::Orientation orientation =
triangulator.compute_polygon_orientation(polygon);
EXPECT_EQ(TriangulatorType::CW, orientation);
}
示例4: iPoints
/*!
The collision polygon calculated isn't optimal. We do it because it is used
for drawing. For collision handling it is poor.
\todo Refactor so collision and drawing polygon don't need to be the same
*/
PointsView::PointsView(Points2::iterator begin, Points2::iterator end) : iPoints(begin, end)
{
// Find rectangular polygon that will enclose all
// added points
Rect2 r;
Points2::iterator it;
for (it = begin; it != end; ++it) {
r = r.surround(*it);
}
Polygon2 p;
p.push_back(r.bottomLeft());
p.push_back(r.bottomRight());
p.push_back(r.topRight());
p.push_back(r.topLeft());
setCollisionPolygon(p);
}
示例5: getPolygon
/*!
Gets polygon from array of points stored at index t in
lua stack. We assume array is a table of the form
{{x = 1, y = 2}, {x = 3, y = 4}}. Polygon is returned in p.
*/
void getPolygon(lua_State* L, int t, Polygon2& p)
{
luaL_checktype(L, t, LUA_TTABLE); // Make sure we get a table with points as first argument
lua_pushnil(L); // first key (ready traversal of table)
while (lua_next(L, t) != 0) {
// ‘key’ is at index -2 and ‘value’ at index -1
p.push_back(Vector2_pull(L,-1));
lua_pop(L, 1); // removes ‘value’; keeps ‘key’ for next iteration
}
}
示例6: p
bool GraphImp2::shortestPath(Trapezoid2* source, Trapezoid2* target, Polygon2& path) const
{
assert(iGraph != 0);
assert(source != 0 && target != 0);
Graph& g = *iGraph;
// Find source and target vertex in graph
Vertex s = vertex(source->tag(), g);
Vertex t = vertex(target->tag(), g);
Vertices p(num_vertices(g)); // Predecessor map
Reals d(num_vertices(g)); // Distance map
// A* will find ALL shortest paths like Dijkstra so we need to throw exception when goal has been found
try {
astar_search(
g,
s,
DistanceHeuristic(iGraph, t),
weight_map(get(&EdgeProperty::weight, g)).
predecessor_map(make_iterator_property_map(p.begin(), get(vertex_index, g))).
distance_map(make_iterator_property_map(d.begin(), get(vertex_index, g))).
visitor(GoalVisitor(t))
);
}
catch (FoundGoalException e) {
Vertex t = vertex(target->tag(), g);
// Store coordinates of shortest path
while (t != p[t]) {
path.push_back(g[t]);
t = p[t];
}
path.push_back(g[t]);
reverse(path.begin(), path.end());
return true;
}
return false;
}
示例7: testSpecialIntersect
/**
* This was indentified as a trouble area. Numbers were produced from
* recording points which caused trouble in simulator.
*/
void SpriteTests::testSpecialIntersect()
{
AutoreleasePool::begin();
Polygon2 ship_points;
ship_points.push_back(Vector2(8.59, -3.69));
ship_points.push_back(Vector2(10.59, -2.69));
ship_points.push_back(Vector2(8.59, -1.69));
MockView* view = new MockView(ship_points);
Sprite* space_ship = new Sprite(view);
space_ship->setPosition(Vector2(0.0f, 0.0f));
// Obstacle
Polygon2 points;
// points.push_back(Vector2(16.7143, 9.85714));
// points.push_back(Vector2(20.2857, 9.71429));
// points.push_back(Vector2(20.1429, -19));
// points.push_back(Vector2(10, -19.1429));
// points.push_back(Vector2(10.4286, -6.71429));
points.push_back(Vector2(10.4286, -6.71429));
points.push_back(Vector2(10, -19.1429));
points.push_back(Vector2(20.1429, -19));
points.push_back(Vector2(20.2857, 9.71429));
points.push_back(Vector2(16.7143, 9.85714));
Sprite* obstacle = new Sprite(new MockView(points));
obstacle->setPosition(Vector2(0.0f, 0.0f));
CPTAssert(!space_ship->collide(obstacle, t, dt));
CPTAssert(!obstacle->collide(space_ship, t, dt));
space_ship->release();
obstacle->release();
AutoreleasePool::end();
}
示例8: circ
bool build_convex_polygon(
Pmwx::Ccb_halfedge_circulator ccb,
vector<pair<Pmwx::Halfedge_handle, Pmwx::Halfedge_handle> >& sides,
const CoordTranslator2& trans,
Polygon2& metric_bounds,
double max_err_mtrs,
double min_side_len)
{
double e_sq = max_err_mtrs*max_err_mtrs;
sides.clear();
metric_bounds.clear();
Pmwx::Ccb_halfedge_circulator circ(ccb);
// Bbox2 bounds;
//
// do {
// bounds += cgal2ben(circ->source()->point());
// } while (++circ != ccb);
Pmwx::Ccb_halfedge_circulator start,next;
start = ccb;
do {
--start;
if(!sides_can_merge(start,ccb))
break;
if(!within_err_metric(start,ccb,trans,e_sq))
break;
} while(start != ccb);
++start;
// now we can go around.
circ = start;
//int ne = count_circulator(start);
//printf("Poly has %d sides.\n", ne);
do {
Pmwx::Ccb_halfedge_circulator stop(circ);
do {
++stop;
} while(sides_can_merge(circ,stop) && within_err_metric(circ,stop,trans,e_sq) && stop != start);
--stop;
//printf("Pushing side of %d, %d\n", circulator_distance_to(start, circ),circulator_distance_to(start,stop));
sides.push_back(pair<Pmwx::Halfedge_handle,Pmwx::Halfedge_handle>(circ, stop));
++stop;
circ = stop;
} while(circ != start);
if(sides.size() < 3)
{
//debug_mesh_point(bounds.centroid(),1,1,1);
return false;
}
int i, j, k;
vector<Segment2> msides;
for(i = 0; i < sides.size(); ++i)
{
j = (i + 1) % sides.size();
DebugAssert(sides[i].second->target() == sides[j].first->source());
msides.push_back(Segment2(
trans.Forward(cgal2ben(sides[i].first->source()->point())),
trans.Forward(cgal2ben(sides[i].second->target()->point()))));
}
vector<Segment2> debug(msides);
for(i = 0; i < sides.size(); ++i)
{
j = (i + 1) % sides.size();
Vector2 v1(msides[i].p1,msides[i].p2);
Vector2 v2(msides[j].p1,msides[j].p2);
v1.normalize();
v2.normalize();
if(v1.dot(v2) > 0.9998 ||
!v1.left_turn(v2))
{
//debug_mesh_point(trans.Reverse(msides[i].p2),1,0,0);
return false;
}
double w = width_for_he(sides[i].first);
if(w)
{
v1 = v1.perpendicular_ccw();
v1 *= w;
msides[i].p1 += v1;
msides[i].p2 += v1;
}
}
for(j = 0; j < sides.size(); ++j)
{
i = (j + sides.size() - 1) % sides.size();
Line2 li(msides[i]), lj(msides[j]);
Point2 p;
if(!li.intersect(lj,p))
{
Assert(!"Failure to intersect.\n");
return false;
}
//.........这里部分代码省略.........
示例9: isGood
bool isGood() {
stringstream ss;
ss << points.size() << endl;
auto out = [&](const Gmpq& q) {
if (1 != q.denominator()) {
ss << q;
} else {
ss << q.numerator();
}
};
vector<Point2> vp(points.size());
for (const auto& p: points) {
vp[p.second] = p.first;
}
for (const auto& p: vp) {
out(p.x());
ss << ",";
out(p.y());
ss << endl;
}
ss << facets.size() << endl;
map<Point2, Point2> transform;
for (const auto& f: facets) {
ss << f.polygon.size();
Polygon2 transformed;
auto inverse = f.transformation.inverse();
for (auto fp = f.polygon.vertices_begin(); fp != f.polygon.vertices_end(); ++fp) {
auto inv = inverse(*fp);
if (0 == points.count(inv)) {
cout << "point not found" << endl;
return false;
}
ss << " " << points[inv];
transformed.push_back(vp[points[inv]]);
transform[inv] = *fp;
}
ss << endl;
auto area = transformed.area();
if (0 == area) {
cout << "empty facet" << endl;
return false;
}
if (abs(area) != abs(f.polygon.area())) {
cout << "not congruent" << endl;
return false;
}
}
for (const auto& p: vp) {
if (!transform.count(p)) {
cout << "point not found 2" << endl;
return false;
}
auto transformed = transform[p];
out(transformed.x());
ss << ",";
out(transformed.y());
ss << endl;
}
sSolution = ss.str();
// cout << sSolution << endl;
return sSolution.size() < 5000;
}
示例10: split
Solution split(const Line2& line, bool up) const {
Solution result;
result.points = points;
for (const auto& facet: facets) {
if (doIntersect(facet.polygon, line)) {
Facet facet1;
facet1.transformation = facet.transformation;
Facet facet2;
Transformation2 reflection( sqr(line.b()) - sqr(line.a()), -2*line.a()*line.b(), -2*line.a()*line.c(),
-2*line.a()*line.b(), sqr(line.a()) - sqr(line.b()), -2*line.b()*line.c(),
sqr(line.a()) + sqr(line.b()) );
facet2.transformation = reflection*facet.transformation;
auto inverse = facet.transformation.inverse();
bool fail = false;
for (auto edge = facet.polygon.edges_begin(); edge != facet.polygon.edges_end(); ++edge) {
const auto len2 = edge->squared_length();
const auto len2new = edge->transform(facet2.transformation).squared_length();
if (len2 != len2new) {
throw runtime_error("bad transform");
}
if (line.has_on_positive_side(edge->source()) == up) {
facet1.polygon.push_back(edge->source());
} else {
facet2.polygon.push_back(reflection(edge->source()));
}
auto intersect = intersection(*edge, line);
if (intersect) {
Point2* p = boost::get<Point2>(&*intersect);
if (p) {
auto revPoint = inverse(*p);
if (!result.points.count(revPoint)) {
result.points[revPoint] = result.points.size();
}
facet1.polygon.push_back(*p);
facet2.polygon.push_back(*p);
} else {
fail = true;
}
}
}
auto normalize = [&](Facet& f) {
auto area = f.polygon.area();
if (area == 0) {
return;
}
vector<Point2> points(f.polygon.size());
for (size_t i = 0; i < f.polygon.size(); ++i) {
points[i] = f.polygon[i];
}
points.erase(unique(points.begin(), points.end()), points.end());
if (points.empty()) {
return;
}
if (area < 0) {
reverse(points.begin(), points.end());
}
Polygon2 p;
for (const auto& pnt: points) {
p.push_back(pnt);
}
f.polygon = p;
result.facets.push_back(f);
};
if (!fail) {
normalize(facet1);
normalize(facet2);
} else {
result.facets.push_back(facet);
}
} else {
result.facets.push_back(facet);
}
}
for (const auto& f: result.facets) {
result.polygon.join(f.polygon);
}
return result;
}