本文整理汇总了C++中Point_set类的典型用法代码示例。如果您正苦于以下问题:C++ Point_set类的具体用法?C++ Point_set怎么用?C++ Point_set使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Point_set类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: advancing_front
void advancing_front (const Point_set& points, Scene_polyhedron_item* new_item, double size,
double radius_ratio_bound = 5., double beta = 0.52)
{
// TODO: build DT with indices
Polyhedron& P = * const_cast<Polyhedron*>(new_item->polyhedron());
Radius filter (size);
typedef CGAL::Advancing_front_surface_reconstruction_vertex_base_3<Kernel> LVb;
typedef CGAL::Advancing_front_surface_reconstruction_cell_base_3<Kernel> LCb;
typedef CGAL::Triangulation_data_structure_3<LVb,LCb> Tds;
typedef CGAL::Delaunay_triangulation_3<Kernel,Tds> Triangulation_3;
typedef CGAL::Advancing_front_surface_reconstruction<Triangulation_3, Radius> Reconstruction;
Triangulation_3 dt( boost::make_transform_iterator(points.begin_or_selection_begin(), Point_set_make_pair_point_index(points)),
boost::make_transform_iterator(points.end(), Point_set_make_pair_point_index(points)) );
Reconstruction R(dt, filter);
R.run(radius_ratio_bound, beta);
CGAL::AFSR::construct_polyhedron(P, R);
}
示例2: advancing_front
void advancing_front (const Point_set& points, Scene_polyhedron_item* new_item, double size)
{
Polyhedron& P = * const_cast<Polyhedron*>(new_item->polyhedron());
Radius filter(10 * size);
CGAL::advancing_front_surface_reconstruction (points.begin (), points.end (), P, filter);
}
示例3: print_point_set
void print_point_set (const Point_set& point_set)
{
std::cerr << "Content of point set:" << std::endl;
for (Point_set::const_iterator it = point_set.begin();
it != point_set.end(); ++ it)
std::cerr << "* Point " << *it
<< ": " << point_set.point(*it) // or point_set[it]
<< " with normal " << point_set.normal(*it)
<< std::endl;
}
示例4: advancing_front
void advancing_front (const Point_set& points, Scene_polyhedron_item* new_item, double size,
double radius_ratio_bound = 5., double beta = 0.52)
{
Polyhedron& P = * const_cast<Polyhedron*>(new_item->polyhedron());
Radius filter (size);
CGAL::advancing_front_surface_reconstruction (points.begin (), points.end (), P, filter,
radius_ratio_bound, beta);
}
示例5: compute_normals
void compute_normals (Point_set& points, unsigned int neighbors)
{
CGAL::jet_estimate_normals<Concurrency_tag>(points.begin_or_selection_begin(), points.end(),
points.point_map(),
points.normal_map(),
2 * neighbors);
points.set_first_selected (CGAL::mst_orient_normals (points.begin(), points.end(),
points.point_map(),
points.normal_map(),
2 * neighbors));
points.delete_selection();
}
示例6: read_grid_geometry
Geostat_grid* Pointset_geometry_xml_io::
read_grid_geometry(QDir dir,const QDomElement& elem, std::string* errors) const {
std::string grid_name = elem.attribute("name").toStdString();
QDomElement elemGeom = elem.firstChildElement("Geometry");
QString grid_size_str = elemGeom.attribute("size");
bool ok_size;
int size = grid_size_str.toInt(&ok_size);
if(!ok_size) {
errors->append("Failed to get the size of the grid");
return 0;
}
SmartPtr<Named_interface> ni =
Root::instance()->new_interface( "point_set://" + grid_name+"::"+grid_size_str.toStdString(),
gridModels_manager + "/" + grid_name);
Point_set* grid = dynamic_cast<Point_set*>( ni.raw_ptr() );
if(grid==0) return 0;
QFile file( dir.absolutePath()+"/coordinates.sgems" );
if( !file.open( QIODevice::ReadOnly ) ) {
errors->append("Could not open file coordinates.sgems");
return grid;
}
QDataStream stream( &file );
#if QT_VERSION >= 0x040600
stream.setFloatingPointPrecision(QDataStream::SinglePrecision);
#endif
/*
// read the coordinates of the points
std::string coordsfile = dir.absolutePath().toStdString()+"/coordinates.sgems";
std::fstream stream(coordsfile.c_str(),std::ios::in | std::ios::binary );
if(stream.bad()) {
errors->append("Could not open file "+coordsfile);
return grid;
}
*/
std::vector<Point_set::location_type > coords;
for( unsigned int k = 0; k < size; k ++ ) {
GsTLCoord x,y,z;
stream >> x >> y >> z;
coords.push_back( Point_set::location_type( x,y,z) );
}
grid->point_locations( coords );
return grid;
}
示例7: compute_normals
void compute_normals (Point_set& points, unsigned int neighbors)
{
CGAL::jet_estimate_normals<Concurrency_tag>(points.begin(), points.end(),
CGAL::make_normal_of_point_with_normal_pmap(Point_set::value_type()),
2 * neighbors);
points.erase (CGAL::mst_orient_normals (points.begin(), points.end(),
CGAL::make_normal_of_point_with_normal_pmap(Point_set::value_type()),
2 * neighbors),
points.end ());
}
示例8: smooth_point_set
void smooth_point_set (Point_set& points, unsigned int scale)
{
CGAL::jet_smooth_point_set<Concurrency_tag>(points.begin(), points.end(),
scale);
}
示例9: scale_space
void scale_space (const Point_set& points, ItemsInserter items,
unsigned int scale, bool generate_smooth = false,
bool separate_shells = false, bool force_manifold = true,
unsigned int samples = 300, unsigned int iterations = 4)
{
ScaleSpace reconstruct (scale, samples);
reconstruct.reconstruct_surface(points.begin (), points.end (), iterations,
separate_shells, force_manifold);
for( unsigned int sh = 0; sh < reconstruct.number_of_shells(); ++sh )
{
Scene_polygon_soup_item* new_item
= new Scene_polygon_soup_item ();
new_item->setColor(Qt::magenta);
new_item->setRenderingMode(FlatPlusEdges);
new_item->init_polygon_soup(points.size(), reconstruct.number_of_triangles ());
Scene_polygon_soup_item* smooth_item = NULL;
if (generate_smooth)
{
smooth_item = new Scene_polygon_soup_item ();
smooth_item->setColor(Qt::magenta);
smooth_item->setRenderingMode(FlatPlusEdges);
smooth_item->init_polygon_soup(points.size(), reconstruct.number_of_triangles ());
}
std::map<unsigned int, unsigned int> map_i2i;
unsigned int current_index = 0;
for (ScaleSpace::Triple_iterator it = reconstruct.shell_begin (sh);
it != reconstruct.shell_end (sh); ++ it)
{
for (unsigned int ind = 0; ind < 3; ++ ind)
{
if (map_i2i.find ((*it)[ind]) == map_i2i.end ())
{
map_i2i.insert (std::make_pair ((*it)[ind], current_index ++));
Point p = points[(*it)[ind]].position();
new_item->new_vertex (p.x (), p.y (), p.z ());
if (generate_smooth)
{
p = *(reconstruct.points_begin() + (*it)[ind]);
smooth_item->new_vertex (p.x (), p.y (), p.z ());
}
}
}
new_item->new_triangle( map_i2i[(*it)[0]],
map_i2i[(*it)[1]],
map_i2i[(*it)[2]] );
if (generate_smooth)
smooth_item->new_triangle( map_i2i[(*it)[0]],
map_i2i[(*it)[1]],
map_i2i[(*it)[2]] );
}
*(items ++) = new_item;
if (generate_smooth)
*(items ++) = smooth_item;
}
if (force_manifold)
{
std::ptrdiff_t num = std::distance( reconstruct.garbage_begin( ),
reconstruct.garbage_end( ) );
Scene_polygon_soup_item* new_item
= new Scene_polygon_soup_item ();
new_item->setColor(Qt::blue);
new_item->setRenderingMode(FlatPlusEdges);
new_item->init_polygon_soup(points.size(), num);
Scene_polygon_soup_item* smooth_item = NULL;
if (generate_smooth)
{
smooth_item = new Scene_polygon_soup_item ();
smooth_item->setColor(Qt::blue);
smooth_item->setRenderingMode(FlatPlusEdges);
smooth_item->init_polygon_soup(points.size(), num);
}
std::map<unsigned int, unsigned int> map_i2i;
unsigned int current_index = 0;
for (ScaleSpace::Triple_iterator it=reconstruct.garbage_begin(),
end=reconstruct.garbage_end();it!=end;++it)
{
for (unsigned int ind = 0; ind < 3; ++ ind)
{
if (map_i2i.find ((*it)[ind]) == map_i2i.end ())
{
map_i2i.insert (std::make_pair ((*it)[ind], current_index ++));
Point p = points[(*it)[ind]].position();
new_item->new_vertex (p.x (), p.y (), p.z ());
if (generate_smooth)
{
p = *(reconstruct.points_begin() + (*it)[ind]);
smooth_item->new_vertex (p.x (), p.y (), p.z ());
//.........这里部分代码省略.........
示例10: scale_of_noise
unsigned int scale_of_noise (const Point_set& points, double& size)
{
Tree tree(points.begin(), points.end());
double ratio_kept = (points.size() < 1000)
? 1. : 1000. / (points.size());
std::vector<Point> subset;
for (std::size_t i = 0; i < points.size (); ++ i)
if (rand() / (double)RAND_MAX < ratio_kept)
subset.push_back (points[i]);
std::vector<unsigned int> scales;
generate_scales (std::back_inserter (scales));
std::vector<unsigned int> chosen;
for (std::size_t i = 0; i < subset.size (); ++ i)
{
Neighbor_search search(tree, subset[i],scales.back());
double current = 0.;
unsigned int nb = 0;
std::size_t index = 0;
double minimum = (std::numeric_limits<double>::max)();
unsigned int c = 0;
for (Search_iterator search_iterator = search.begin();
search_iterator != search.end (); ++ search_iterator, ++ nb)
{
current += search_iterator->second;
if (nb + 1 == scales[index])
{
double score = std::sqrt (current / scales[index])
/ std::pow (scales[index], 0.375); // NB ^ (5/12)
if (score < minimum)
{
minimum = score;
c = scales[index];
}
++ index;
if (index == scales.size ())
break;
}
}
chosen.push_back (c);
}
std::sort (chosen.begin (), chosen.end());
unsigned int noise_scale = chosen[chosen.size() / 2];
size = 0.;
for (std::size_t i = 0; i < subset.size (); ++ i)
{
Neighbor_search search(tree, subset[i], noise_scale);
size += std::sqrt ((-- search.end())->second);
}
size /= subset.size();
return noise_scale;
}
示例11: simplify_point_set
void simplify_point_set (Point_set& points, double size)
{
points.erase (CGAL::grid_simplify_point_set (points.begin (), points.end (), size),
points.end ());
}
示例12: scale_of_anisotropy
unsigned int scale_of_anisotropy (const Point_set& points, double& size)
{
Tree tree(points.begin(), points.end());
double ratio_kept = (points.size() < 1000)
? 1. : 1000. / (points.size());
std::vector<Point> subset;
for (std::size_t i = 0; i < points.size (); ++ i)
if (rand() / (double)RAND_MAX < ratio_kept)
subset.push_back (points[i]);
std::vector<unsigned int> scales;
generate_scales (std::back_inserter (scales));
std::vector<unsigned int> chosen;
for (std::size_t i = 0; i < subset.size (); ++ i)
{
Neighbor_search search(tree, subset[i],scales.back());
double current = 0.;
unsigned int nb = 0;
std::size_t index = 0;
double maximum = 0.;
unsigned int c = 0;
for (Search_iterator search_iterator = search.begin();
search_iterator != search.end (); ++ search_iterator, ++ nb)
{
current += search_iterator->second;
if (nb + 1 == scales[index])
{
double score = std::sqrt (current / scales[index])
/ std::pow (scales[index], 0.75); // NB ^ (3/4)
if (score > maximum)
{
maximum = score;
c = scales[index];
}
++ index;
if (index == scales.size ())
break;
}
}
chosen.push_back (c);
}
double mean = 0.;
for (std::size_t i = 0; i < chosen.size(); ++ i)
mean += chosen[i];
mean /= chosen.size();
unsigned int aniso_scale = static_cast<unsigned int>(mean);
size = 0.;
for (std::size_t i = 0; i < subset.size (); ++ i)
{
Neighbor_search search(tree, subset[i], aniso_scale);
size += std::sqrt ((-- search.end())->second);
}
size /= subset.size();
return aniso_scale;
}
示例13: poisson_reconstruct
bool poisson_reconstruct(FaceGraph* graph,
Point_set& points,
typename Traits::FT sm_angle, // Min triangle angle (degrees).
typename Traits::FT sm_radius, // Max triangle size w.r.t. point set average spacing.
typename Traits::FT sm_distance, // Approximation error w.r.t. point set average spacing.
const QString& solver_name, // solver name
bool use_two_passes,
bool do_not_fill_holes)
{
// Poisson implicit function
typedef CGAL::Poisson_reconstruction_function<Traits> Poisson_reconstruction_function;
// Surface mesher
typedef CGAL::Surface_mesh_default_triangulation_3 STr;
typedef CGAL::Surface_mesh_complex_2_in_triangulation_3<STr> C2t3;
typedef CGAL::Implicit_surface_3<Traits, Poisson_reconstruction_function> Surface_3;
// AABB tree
typedef CGAL::AABB_face_graph_triangle_primitive<FaceGraph> Primitive;
typedef CGAL::AABB_traits<Traits, Primitive> AABB_traits;
typedef CGAL::AABB_tree<AABB_traits> AABB_tree;
CGAL::Timer task_timer; task_timer.start();
//***************************************
// Checks requirements
//***************************************
if (points.size() == 0)
{
std::cerr << "Error: empty point set" << std::endl;
return false;
}
bool points_have_normals = points.has_normal_map();
if ( ! points_have_normals )
{
std::cerr << "Input point set not supported: this reconstruction method requires oriented normals" << std::endl;
return false;
}
CGAL::Timer reconstruction_timer; reconstruction_timer.start();
//***************************************
// Computes implicit function
//***************************************
std::cerr << "Computes Poisson implicit function "
<< "using " << solver_name.toLatin1().data() << " solver...\n";
// Creates implicit function from the point set.
// Note: this method requires an iterator over points
// + property maps to access each point's position and normal.
Poisson_reconstruction_function function(points.begin_or_selection_begin(), points.end(),
points.point_map(), points.normal_map());
bool ok = false;
#ifdef CGAL_EIGEN3_ENABLED
if(solver_name=="Eigen - built-in simplicial LDLt")
{
CGAL::Eigen_solver_traits<Eigen::SimplicialCholesky<CGAL::Eigen_sparse_matrix<double>::EigenType> > solver;
ok = function.compute_implicit_function(solver, use_two_passes);
}
if(solver_name=="Eigen - built-in CG")
{
CGAL::Eigen_solver_traits<Eigen::ConjugateGradient<CGAL::Eigen_sparse_matrix<double>::EigenType> > solver;
solver.solver().setTolerance(1e-6);
solver.solver().setMaxIterations(1000);
ok = function.compute_implicit_function(solver, use_two_passes);
}
#endif
// Computes the Poisson indicator function f()
// at each vertex of the triangulation.
if ( ! ok )
{
std::cerr << "Error: cannot compute implicit function" << std::endl;
return false;
}
// Prints status
std::cerr << "Total implicit function (triangulation+refinement+solver): " << task_timer.time() << " seconds\n";
task_timer.reset();
//***************************************
// Surface mesh generation
//***************************************
std::cerr << "Surface meshing...\n";
// Computes average spacing
Kernel::FT average_spacing = CGAL::compute_average_spacing<Concurrency_tag>(points.all_or_selection_if_not_empty(),
6 /* knn = 1 ring */,
points.parameters());
// Gets one point inside the implicit surface
Kernel::Point_3 inner_point = function.get_inner_point();
Kernel::FT inner_point_value = function(inner_point);
if(inner_point_value >= 0.0)
//.........这里部分代码省略.........
示例14: name
Geostat_grid* Csv_poinset_infilter::read( std::ifstream& infile ) {
QByteArray tmp = dialog_->name().simplified().toLatin1();
std::string name( tmp.constData() );
int X_col_id = dialog_->X_column_index();
int Y_col_id = dialog_->Y_column_index();
int Z_col_id = dialog_->Z_column_index();
if( X_col_id == Y_col_id || X_col_id == Z_col_id || Y_col_id == Z_col_id ) {
GsTLcerr << "The same column was selected for multiple coordinates \n" << gstlIO::end;
return 0;
}
bool use_no_data_value = dialog_->use_no_data_value();
float no_data_value = GsTLGridProperty::no_data_value;
if( dialog_->use_no_data_value() ) {
no_data_value = dialog_->no_data_value();
}
std::string str;
std::getline(infile, str);
QString qstr(str.c_str());
QStringList property_names = qstr.split(",");
bool is_x_provided = dialog_->X_column_name() != "None";
bool is_y_provided = dialog_->Y_column_name() != "None";
bool is_z_provided = dialog_->Z_column_name() != "None";
if(is_x_provided) property_names.removeOne(dialog_->X_column_name());
if(is_y_provided) property_names.removeOne(dialog_->Y_column_name());
if(is_z_provided) property_names.removeOne(dialog_->Z_column_name());
std::vector< std::vector< QString > > property_values( property_names.size() );
std::vector< Point_set::location_type > point_locations;
// For a csv file no data value is indicated by an empty field e.g. {34,,5.5}
while( std::getline(infile, str) ) {
qstr = str.c_str();
QStringList fields = qstr.split(",");
Point_set::location_type loc;
if(is_x_provided) loc[0] = fields[X_col_id].toDouble();
if(is_y_provided) loc[1] = fields[Y_col_id].toDouble();
if(is_z_provided) loc[2] = fields[Z_col_id].toDouble();
point_locations.push_back(loc);
unsigned int i=0;
for(unsigned int j=0;j<fields.size();j++) {
if(j==0) i=0;
if(j != X_col_id && j != Y_col_id && j != Z_col_id) {
property_values[i].push_back(fields[j]);
i++;
}
}
}
// done reading file
//----------------------------
int point_set_size = point_locations.size();
appli_message( "read " << point_set_size << " points" );
// We now have a vector containing all the locations and another one with
// all the property values.
// Create a pointset, initialize it with the data we collected, and we're done
// ask manager to get a new pointset and initialize it
SmartPtr<Named_interface> ni =
Root::instance()->interface( gridModels_manager + "/" + name );
if( ni.raw_ptr() != 0 ) {
GsTLcerr << "object " << name << " already exists\n" << gstlIO::end;
return 0;
}
std::string size_str = String_Op::to_string( point_set_size );
ni = Root::instance()->new_interface( "point_set://" + size_str,
gridModels_manager + "/" + name );
Point_set* pset = dynamic_cast<Point_set*>( ni.raw_ptr() );
appli_assert( pset != 0 );
pset->point_locations( point_locations );
for( unsigned int k= 0; k < property_names.size(); k++ ) {
// Need to find out if property is categorical
unsigned int check_size = std::min(30,static_cast<int>(property_values[k].size()));
bool is_categ = false;
for(unsigned int i=0; i<check_size ; i++ ) {
bool ok;
property_values[k][i].toFloat(&ok);
if(!ok) {
is_categ = true;
break;
}
}
if(!is_categ) {
//.........这里部分代码省略.........
示例15: main
int main() {
const int grid_size = 10;
// Build grid with locally varying mean
Cartesian_grid* lvm_grid = new Cartesian_grid( grid_size, grid_size, 1 );
GsTLGridProperty* prop = lvm_grid->add_property( "trend", typeid( float ) );
for( int i=0; i< grid_size*grid_size/2 ; i++ ) {
prop->set_value( 0.0, i );
}
for( int i=grid_size*grid_size/2; i< grid_size*grid_size ; i++ ) {
prop->set_value( 10.0, i );
}
Colocated_neighborhood* coloc_neigh =
dynamic_cast<Colocated_neighborhood*>(
lvm_grid->colocated_neighborhood( "trend" )
);
// Build kriging grid
Cartesian_grid* krig_grid = new Cartesian_grid( grid_size, grid_size, 1 );
GsTLGridProperty* krig_prop =
krig_grid->add_property( string("krig"), typeid( float ) );
krig_grid->select_property( "krig");
// Build harddata grid
const int pointset_size = 4;
Point_set* harddata = new Point_set( pointset_size );
std::vector<GsTLPoint> locations;
locations.push_back( GsTLPoint( 0,0,0 ) );
locations.push_back( GsTLPoint( 1,5,0 ) );
locations.push_back( GsTLPoint( 8,8,0 ) );
locations.push_back( GsTLPoint( 5,2,0 ) );
harddata->point_locations( locations );
GsTLGridProperty* hard_prop = harddata->add_property( "poro" );
for( int i=0; i<pointset_size; i++ ) {
hard_prop->set_value( i, i );
}
harddata->select_property( "poro" );
// Set up covariance
Covariance<GsTLPoint> cov;
cov.nugget(0.1);
cov.add_structure( "Spherical" );
cov.sill( 0, 0.9 );
cov.set_geometry( 0, 10,10,10, 0,0,0 );
Grid_initializer initializer;
initializer.assign( krig_grid,
krig_prop,
harddata,
"poro" );
for( int i=0; i< krig_prop->size(); i++ ) {
if( krig_prop->is_harddata( i ) )
cout << "value at " << i << ": "
<< krig_prop->get_value( i ) << endl;
}
krig_grid->select_property( "krig");
Neighborhood* neighborhood = krig_grid->neighborhood( 20, 20, 1, 0,0,0,
&cov, true );
typedef GsTLPoint Location;
typedef std::vector<double>::const_iterator weight_iterator;
typedef SKConstraints_impl< Neighborhood, Location > SKConstraints;
typedef SK_local_mean_combiner<weight_iterator, Neighborhood,
Colocated_neighborhood> LVM_combiner;
typedef Kriging_constraints< Neighborhood, Location > KrigingConstraints;
typedef Kriging_combiner< weight_iterator, Neighborhood > KrigingCombiner;
LVM_combiner combiner( *coloc_neigh );
SKConstraints constraints;
// initialize the algo
Kriging algo;
algo.simul_grid_ = krig_grid;
algo.property_name_ = "krig";
algo.harddata_grid_ = 0;
algo.neighborhood_ = neighborhood;
algo.covar_ = cov;
algo.combiner_ = new KrigingCombiner( &combiner );
algo.Kconstraints_ = new KrigingConstraints( &constraints );
// Run and output the results
algo.execute();
ofstream ofile( "result.out" );
if( !ofile ) {
cerr << "can't create file result.out" << endl;
return 1;
}
//.........这里部分代码省略.........