当前位置: 首页>>代码示例>>C++>>正文


C++ PerformanceTimer::getElapsedTimeFormated方法代码示例

本文整理汇总了C++中PerformanceTimer::getElapsedTimeFormated方法的典型用法代码示例。如果您正苦于以下问题:C++ PerformanceTimer::getElapsedTimeFormated方法的具体用法?C++ PerformanceTimer::getElapsedTimeFormated怎么用?C++ PerformanceTimer::getElapsedTimeFormated使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PerformanceTimer的用法示例。


在下文中一共展示了PerformanceTimer::getElapsedTimeFormated方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computeVocabulary

bool BowVocabulary::computeVocabulary(Mat& vocabularyOut, const string& vocabularyImgsList, bool outputAnalyzedImages, bool useOnlyTargetRegions) {
	if (loadVocabulary(vocabularyOut)) {
		return true;
	}	

	_bowTrainer->clear();

	ifstream imgsList(vocabularyImgsList);
	if (imgsList.is_open()) {		
		vector<string> fileNames;
		string filename;
		while (getline(imgsList, filename)) {									
			fileNames.push_back(filename);
		}
		int numberOfFiles = fileNames.size();


		cout << "    -> Building vocabulary with " << numberOfFiles << " images..." << endl;
		PerformanceTimer performanceTimer;
		performanceTimer.start();

		int descriptorsOriginalMatrixType = CV_32FC1;

		//#pragma omp parallel for schedule(dynamic)
		for (int i = 0; i < numberOfFiles; ++i) {
			Mat imagePreprocessed;
			string imageFilename = IMGS_DIRECTORY + fileNames[i] + IMAGE_TOKEN;
			if (_imagePreprocessor->loadAndPreprocessImage(imageFilename, imagePreprocessed, CV_LOAD_IMAGE_GRAYSCALE, false)) {
				Mat outputImage;
				if (outputAnalyzedImages) {
					outputImage = imagePreprocessed.clone();
				}

				if (useOnlyTargetRegions) {
					vector<Mat> masks;
					ImageUtils::retriveTargetsMasks(IMGS_DIRECTORY + fileNames[i], masks);
					for (size_t maskIndex = 0; maskIndex < masks.size(); ++maskIndex) {
						vector<KeyPoint> keypoints;
						Mat targetMask = masks[maskIndex];
						_featureDetector->detect(imagePreprocessed, keypoints, targetMask);						
						//_featureDetector->detect(imagePreprocessed, keypoints, masks[maskIndex]);

						if (keypoints.size() > 3) {
							Mat descriptors;
							_descriptorExtractor->compute(imagePreprocessed, keypoints, descriptors);
							descriptorsOriginalMatrixType = descriptors.type();
							descriptors.convertTo(descriptors, CV_32FC1);

							if (descriptors.rows > 0) {
								//#pragma omp critical
								_bowTrainer->add(descriptors);
							}

							if (outputAnalyzedImages) {
								cv::drawKeypoints(outputImage, keypoints, outputImage);
							}
						}
					}
				} else {
					vector<KeyPoint> keypoints;
					_featureDetector->detect(imagePreprocessed, keypoints);

					if (keypoints.size() > 3) {
						Mat descriptors;
						_descriptorExtractor->compute(imagePreprocessed, keypoints, descriptors);
						descriptorsOriginalMatrixType = descriptors.type();
						descriptors.convertTo(descriptors, CV_32FC1);

						if (descriptors.rows > 0) {
							//#pragma omp critical
							_bowTrainer->add(descriptors);
						}

						if (outputAnalyzedImages) {
							cv::drawKeypoints(outputImage, keypoints, outputImage);
						}
					}					
				}
				
				if (outputAnalyzedImages) {
					stringstream imageOutputFilename;
					imageOutputFilename << VOCABULARY_BUILD_OUTPUT_DIRECTORY << fileNames[i] << FILENAME_SEPARATOR << _vocabularyFilename << IMAGE_OUTPUT_EXTENSION;
					imwrite(imageOutputFilename.str(), outputImage);
				}				
			}
		}
		vocabularyOut = _bowTrainer->cluster();
		saveVocabulary(vocabularyOut);

		vocabularyOut.convertTo(vocabularyOut, descriptorsOriginalMatrixType);
		_bowImgDescriptorExtractor->setVocabulary(vocabularyOut);		
		cout << "    -> Finished building vocabulary with " << vocabularyOut.rows << " word size in " << performanceTimer.getElapsedTimeFormated() << "\n" << endl;
		

		_bowTrainer->clear();
		return true;
	}
	
	return false;
}
开发者ID:ZhangXinNan,项目名称:Car-Detection-1,代码行数:100,代码来源:BowVocabulary.cpp

示例2: computeTrainingData

bool BowVocabulary::computeTrainingData(TrainingData& trainingDataOut, const string& vocabularyImgsList, const string& samplesImgsList, bool outputAnalyzedImages) {	
	if (_bowImgDescriptorExtractor->getVocabulary().rows == 0) {
		Mat vocabulary;
		if (!computeVocabulary(vocabulary, vocabularyImgsList)) {
			return false;
		}
	}

	Mat trainSamples;
	Mat trainLabels(0, 1, CV_32SC1);

	if (loadTrainingSamples(trainSamples) && loadTrainingLabels(trainLabels)) {
		trainingDataOut.setTrainSamples(trainSamples);
		trainingDataOut.setTrainLabels(trainLabels);
		return true;
	}

	ifstream imgsList(vocabularyImgsList);
	if (imgsList.is_open()) {		
		vector<string> fileNames;
		string filename;
		while (getline(imgsList, filename)) {			
			fileNames.push_back(filename);
		}
		int numberOfFiles = fileNames.size();

		int samplesWordSize = _bowImgDescriptorExtractor->getVocabulary().rows;		

		cout << "\n    -> Analysing " << numberOfFiles << " training images..." << endl;
		PerformanceTimer performanceTimer;
		performanceTimer.start();

		//#pragma omp parallel for schedule(dynamic)
		for (int i = 0; i < numberOfFiles; ++i) {
			Mat imagePreprocessed;
			string imageFilenameShort = IMGS_DIRECTORY + fileNames[i];
			string imageFilenameFull = imageFilenameShort + IMAGE_TOKEN;
			if (_imagePreprocessor->loadAndPreprocessImage(imageFilenameFull, imagePreprocessed, CV_LOAD_IMAGE_GRAYSCALE, false)) {
				vector<KeyPoint> keypoints;				
				_featureDetector->detect(imagePreprocessed, keypoints);

				vector< vector <KeyPoint> > keypointsTargetClass;
				vector<KeyPoint> keypointsNonTargetClass;

				ImageUtils::splitKeyPoints(imageFilenameShort, keypoints, keypointsTargetClass, keypointsNonTargetClass);

				for (size_t targetClassInstancePosition = 0; targetClassInstancePosition < keypointsTargetClass.size(); ++targetClassInstancePosition) {
					if (keypointsTargetClass[targetClassInstancePosition].size() > 3) {
						Mat descriptorsTargetClass;						
						_bowImgDescriptorExtractor->compute(imagePreprocessed, keypointsTargetClass[targetClassInstancePosition], descriptorsTargetClass);

						//#pragma omp critical
						if (descriptorsTargetClass.rows > 0 && descriptorsTargetClass.cols == samplesWordSize) {
							trainSamples.push_back(descriptorsTargetClass);
							trainLabels.push_back(1);
						}
					}
				}
				
				if (keypointsNonTargetClass.size() > 3) {
					Mat descriptorsNonTargetClass;
					_bowImgDescriptorExtractor->compute(imagePreprocessed, keypointsNonTargetClass, descriptorsNonTargetClass);

					//#pragma omp critical
					if (descriptorsNonTargetClass.rows > 0 && descriptorsNonTargetClass.cols == samplesWordSize) {
						trainSamples.push_back(descriptorsNonTargetClass);
						trainLabels.push_back(0);
					}
				}

				if (outputAnalyzedImages) {
					stringstream imageOutputFilename;
					imageOutputFilename << SAMPLES_BUILD_OUTPUT_DIRECTORY << fileNames[i] << FILENAME_SEPARATOR << _vocabularyFilename << IMAGE_OUTPUT_EXTENSION;
					for (size_t targetClassInstancePosition = 0; targetClassInstancePosition < keypointsTargetClass.size(); ++targetClassInstancePosition) {
						if (keypointsTargetClass[targetClassInstancePosition].size() > 0) {
							cv::drawKeypoints(imagePreprocessed, keypointsTargetClass[targetClassInstancePosition], imagePreprocessed, TARGET_KEYPOINT_COLOR);
						}
					}

					if (keypointsNonTargetClass.size() > 0) {
						cv::drawKeypoints(imagePreprocessed, keypointsNonTargetClass, imagePreprocessed, NONTARGET_KEYPOINT_COLOR);
					}

					imwrite(imageOutputFilename.str(), imagePreprocessed);
				}					
			}
		}
		cout << "    -> Computed " << trainSamples.rows << " training samples from " << numberOfFiles << " images in " << performanceTimer.getElapsedTimeFormated() << "\n" << endl;

		if (trainSamples.rows != trainLabels.rows || trainSamples.rows == 0 || trainLabels.rows == 0) {
			cout << "\n    !> Invalid training data!\n\n\n" << endl;
			return false;
		}

		trainingDataOut.setTrainSamples(trainSamples);
		trainingDataOut.setTrainLabels(trainLabels);

		saveTrainingSamples(trainSamples);
		saveTrainingLabels(trainLabels);
		return true;
//.........这里部分代码省略.........
开发者ID:ZhangXinNan,项目名称:Car-Detection-1,代码行数:101,代码来源:BowVocabulary.cpp


注:本文中的PerformanceTimer::getElapsedTimeFormated方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。