本文整理汇总了C++中ParallelScavengeHeap::gc_policy_counters方法的典型用法代码示例。如果您正苦于以下问题:C++ ParallelScavengeHeap::gc_policy_counters方法的具体用法?C++ ParallelScavengeHeap::gc_policy_counters怎么用?C++ ParallelScavengeHeap::gc_policy_counters使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ParallelScavengeHeap
的用法示例。
在下文中一共展示了ParallelScavengeHeap::gc_policy_counters方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: invoke
// This method contains all heap specific policy for invoking scavenge.
// PSScavenge::invoke_no_policy() will do nothing but attempt to
// scavenge. It will not clean up after failed promotions, bail out if
// we've exceeded policy time limits, or any other special behavior.
// All such policy should be placed here.
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
void PSScavenge::invoke() {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
assert(!Universe::heap()->is_gc_active(), "not reentrant");
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSAdaptiveSizePolicy* policy = heap->size_policy();
IsGCActiveMark mark;
bool scavenge_was_done = PSScavenge::invoke_no_policy();
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
if (UsePerfData)
counters->update_full_follows_scavenge(0);
if (!scavenge_was_done ||
policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
if (UsePerfData)
counters->update_full_follows_scavenge(full_follows_scavenge);
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
CollectorPolicy* cp = heap->collector_policy();
const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
if (UseParallelOldGC) {
PSParallelCompact::invoke_no_policy(clear_all_softrefs);
} else {
PSMarkSweep::invoke_no_policy(clear_all_softrefs);
}
}
}
示例2: should_attempt_scavenge
bool PSScavenge::should_attempt_scavenge() {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
if (UsePerfData) {
counters->update_scavenge_skipped(not_skipped);
}
PSYoungGen* young_gen = heap->young_gen();
PSOldGen* old_gen = heap->old_gen();
if (!ScavengeWithObjectsInToSpace) {
// Do not attempt to promote unless to_space is empty
if (!young_gen->to_space()->is_empty()) {
_consecutive_skipped_scavenges++;
if (UsePerfData) {
counters->update_scavenge_skipped(to_space_not_empty);
}
return false;
}
}
// Test to see if the scavenge will likely fail.
PSAdaptiveSizePolicy* policy = heap->size_policy();
// A similar test is done in the policy's should_full_GC(). If this is
// changed, decide if that test should also be changed.
size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
bool result = promotion_estimate < old_gen->free_in_bytes();
if (PrintGCDetails && Verbose) {
gclog_or_tty->print(result ? " do scavenge: " : " skip scavenge: ");
gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
" padded_average_promoted " SIZE_FORMAT
" free in old gen " SIZE_FORMAT,
(size_t) policy->average_promoted_in_bytes(),
(size_t) policy->padded_average_promoted_in_bytes(),
old_gen->free_in_bytes());
if (young_gen->used_in_bytes() <
(size_t) policy->padded_average_promoted_in_bytes()) {
gclog_or_tty->print_cr(" padded_promoted_average is greater"
" than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
}
}
if (result) {
_consecutive_skipped_scavenges = 0;
} else {
_consecutive_skipped_scavenges++;
if (UsePerfData) {
counters->update_scavenge_skipped(promoted_too_large);
}
}
return result;
}
示例3: invoke
// This method contains all heap specific policy for invoking scavenge.
// PSScavenge::invoke_no_policy() will do nothing but attempt to
// scavenge. It will not clean up after failed promotions, bail out if
// we've exceeded policy time limits, or any other special behavior.
// All such policy should be placed here.
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
void PSScavenge::invoke()
{
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
assert(!Universe::heap()->is_gc_active(), "not reentrant");
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSAdaptiveSizePolicy* policy = heap->size_policy();
// Before each allocation/collection attempt, find out from the
// policy object if GCs are, on the whole, taking too long. If so,
// bail out without attempting a collection.
if (!policy->gc_time_limit_exceeded()) {
IsGCActiveMark mark;
bool scavenge_was_done = PSScavenge::invoke_no_policy();
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
if (UsePerfData)
counters->update_full_follows_scavenge(0);
if (!scavenge_was_done ||
policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
if (UsePerfData)
counters->update_full_follows_scavenge(full_follows_scavenge);
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
if (UseParallelOldGC) {
PSParallelCompact::invoke_no_policy(false);
} else {
PSMarkSweep::invoke_no_policy(false);
}
}
}
}
示例4: invoke_no_policy
//.........这里部分代码省略.........
// failure cleanup time as part of the collection (otherwise, we're
// implicitly saying it's mutator time).
size_policy->minor_collection_end(gc_cause);
if (!promotion_failure_occurred) {
// Swap the survivor spaces.
young_gen->eden_space()->clear();
young_gen->from_space()->clear();
young_gen->swap_spaces();
size_t survived = young_gen->from_space()->used_in_bytes();
size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
size_policy->update_averages(_survivor_overflow, survived, promoted);
if (UseAdaptiveSizePolicy) {
// Calculate the new survivor size and tenuring threshold
if (PrintAdaptiveSizePolicy) {
gclog_or_tty->print("AdaptiveSizeStart: ");
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" collection: %d ",
heap->total_collections());
if (Verbose) {
gclog_or_tty->print("old_gen_capacity: %zd young_gen_capacity: %zd"
" perm_gen_capacity: %zd ",
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
perm_gen->capacity_in_bytes());
}
}
if (UsePerfData) {
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
counters->update_old_eden_size(
size_policy->calculated_eden_size_in_bytes());
counters->update_old_promo_size(
size_policy->calculated_promo_size_in_bytes());
counters->update_old_capacity(old_gen->capacity_in_bytes());
counters->update_young_capacity(young_gen->capacity_in_bytes());
counters->update_survived(survived);
counters->update_promoted(promoted);
counters->update_survivor_overflowed(_survivor_overflow);
}
size_t survivor_limit =
size_policy->max_survivor_size(young_gen->max_size());
_tenuring_threshold =
size_policy->compute_survivor_space_size_and_threshold(
_survivor_overflow,
_tenuring_threshold,
survivor_limit);
if (PrintTenuringDistribution) {
gclog_or_tty->cr();
gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %ld)",
size_policy->calculated_survivor_size_in_bytes(),
_tenuring_threshold, MaxTenuringThreshold);
}
if (UsePerfData) {
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
counters->update_tenuring_threshold(_tenuring_threshold);
counters->update_survivor_size_counters();
}
示例5: invoke_no_policy
//.........这里部分代码省略.........
assert(young_gen->max_size() >
young_gen->from_space()->capacity_in_bytes() +
young_gen->to_space()->capacity_in_bytes(),
"Sizes of space in young gen are out-of-bounds");
size_t max_eden_size = young_gen->max_size() -
young_gen->from_space()->capacity_in_bytes() -
young_gen->to_space()->capacity_in_bytes();
size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
young_gen->eden_space()->used_in_bytes(),
old_gen->used_in_bytes(),
perm_gen->used_in_bytes(),
young_gen->eden_space()->capacity_in_bytes(),
old_gen->max_gen_size(),
max_eden_size,
true /* full gc*/,
gc_cause);
heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
// Don't resize the young generation at an major collection. A
// desired young generation size may have been calculated but
// resizing the young generation complicates the code because the
// resizing of the old generation may have moved the boundary
// between the young generation and the old generation. Let the
// young generation resizing happen at the minor collections.
}
if (PrintAdaptiveSizePolicy) {
gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
heap->total_collections());
}
}
if (UsePerfData) {
heap->gc_policy_counters()->update_counters();
heap->gc_policy_counters()->update_old_capacity(
old_gen->capacity_in_bytes());
heap->gc_policy_counters()->update_young_capacity(
young_gen->capacity_in_bytes());
}
heap->resize_all_tlabs();
// We collected the perm gen, so we'll resize it here.
perm_gen->compute_new_size(perm_gen_prev_used);
if (TraceGen1Time) accumulated_time()->stop();
if (PrintGC) {
if (PrintGCDetails) {
// Don't print a GC timestamp here. This is after the GC so
// would be confusing.
young_gen->print_used_change(young_gen_prev_used);
old_gen->print_used_change(old_gen_prev_used);
}
heap->print_heap_change(prev_used);
// Do perm gen after heap becase prev_used does
// not include the perm gen (done this way in the other
// collectors).
if (PrintGCDetails) {
perm_gen->print_used_change(perm_gen_prev_used);
}
}
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
示例6: invoke_no_policy
//.........这里部分代码省略.........
young_gen->from_space()->capacity_in_bytes() -
young_gen->to_space()->capacity_in_bytes();
// Used for diagnostics
size_policy->clear_generation_free_space_flags();
size_policy->compute_generations_free_space(young_live,
eden_live,
old_live,
cur_eden,
max_old_gen_size,
max_eden_size,
true /* full gc*/);
size_policy->check_gc_overhead_limit(young_live,
eden_live,
max_old_gen_size,
max_eden_size,
true /* full gc*/,
gc_cause,
heap->collector_policy());
size_policy->decay_supplemental_growth(true /* full gc*/);
heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
size_policy->calculated_survivor_size_in_bytes());
}
if (PrintAdaptiveSizePolicy) {
gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
heap->total_collections());
}
}
if (UsePerfData) {
heap->gc_policy_counters()->update_counters();
heap->gc_policy_counters()->update_old_capacity(
old_gen->capacity_in_bytes());
heap->gc_policy_counters()->update_young_capacity(
young_gen->capacity_in_bytes());
}
heap->resize_all_tlabs();
// We collected the heap, recalculate the metaspace capacity
MetaspaceGC::compute_new_size();
if (TraceOldGenTime) accumulated_time()->stop();
if (PrintGC) {
if (PrintGCDetails) {
// Don't print a GC timestamp here. This is after the GC so
// would be confusing.
young_gen->print_used_change(young_gen_prev_used);
old_gen->print_used_change(old_gen_prev_used);
}
heap->print_heap_change(prev_used);
if (PrintGCDetails) {
MetaspaceAux::print_metaspace_change(metadata_prev_used);
}
}
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
}
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
HandleMark hm; // Discard invalid handles created during verification
Universe::verify(" VerifyAfterGC:");
}
// Re-verify object start arrays
if (VerifyObjectStartArray &&
VerifyAfterGC) {
old_gen->verify_object_start_array();
}
if (ZapUnusedHeapArea) {
old_gen->object_space()->check_mangled_unused_area_complete();
}
NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
heap->print_heap_after_gc();
heap->trace_heap_after_gc(_gc_tracer);
heap->post_full_gc_dump(_gc_timer);
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
_gc_timer->register_gc_end();
_gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
return true;
}
示例7: invoke_no_policy
//.........这里部分代码省略.........
// implicitly saying it's mutator time).
size_policy->minor_collection_end(gc_cause);
if (!promotion_failure_occurred) {
// Swap the survivor spaces.
young_gen->eden_space()->clear(SpaceDecorator::Mangle);
young_gen->from_space()->clear(SpaceDecorator::Mangle);
young_gen->swap_spaces();
size_t survived = young_gen->from_space()->used_in_bytes();
size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
size_policy->update_averages(_survivor_overflow, survived, promoted);
// A successful scavenge should restart the GC time limit count which is
// for full GC's.
size_policy->reset_gc_overhead_limit_count();
if (UseAdaptiveSizePolicy) {
// Calculate the new survivor size and tenuring threshold
if (PrintAdaptiveSizePolicy) {
gclog_or_tty->print("AdaptiveSizeStart: ");
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" collection: %d ",
heap->total_collections());
if (Verbose) {
gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
}
}
if (UsePerfData) {
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
counters->update_old_eden_size(
size_policy->calculated_eden_size_in_bytes());
counters->update_old_promo_size(
size_policy->calculated_promo_size_in_bytes());
counters->update_old_capacity(old_gen->capacity_in_bytes());
counters->update_young_capacity(young_gen->capacity_in_bytes());
counters->update_survived(survived);
counters->update_promoted(promoted);
counters->update_survivor_overflowed(_survivor_overflow);
}
size_t max_young_size = young_gen->max_size();
// Deciding a free ratio in the young generation is tricky, so if
// MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating
// that the old generation size may have been limited because of them) we
// should then limit our young generation size using NewRatio to have it
// follow the old generation size.
if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) {
max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size());
}
size_t survivor_limit =
size_policy->max_survivor_size(max_young_size);
_tenuring_threshold =
size_policy->compute_survivor_space_size_and_threshold(
_survivor_overflow,
_tenuring_threshold,
survivor_limit);
if (PrintTenuringDistribution) {
gclog_or_tty->cr();