当前位置: 首页>>代码示例>>C++>>正文


C++ OutputInfo::setOutputList方法代码示例

本文整理汇总了C++中OutputInfo::setOutputList方法的典型用法代码示例。如果您正苦于以下问题:C++ OutputInfo::setOutputList方法的具体用法?C++ OutputInfo::setOutputList怎么用?C++ OutputInfo::setOutputList使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在OutputInfo的用法示例。


在下文中一共展示了OutputInfo::setOutputList方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: run

    void SoftCascadeLearner::run(const nor_utils::Args& args)
    {
        // load the arguments
        this->getArgs(args);
        
        //print cascade properties
        if (_verbose > 0) {
            cout    << "[+] Softcascade parameters :" << endl
                    << "\t --> target detection rate = " << _targetDetectionRate << endl
                    << "\t --> alpha (exp param) = " << _alphaExponentialParameter << endl
                    << "\t --> bootstrap rate = " << _bootstrapRate << endl
                    << endl;
        }
        

        // get the registered weak learner (type from name)
        BaseLearner* pWeakHypothesisSource = 
            BaseLearner::RegisteredLearners().getLearner(_baseLearnerName);
        // initialize learning options; normally it's done in the strong loop
        // also, here we do it for Product learners, so input data can be created
        pWeakHypothesisSource->initLearningOptions(args);

        // get the training input data, and load it

        InputData* pTrainingData = pWeakHypothesisSource->createInputData();
        pTrainingData->initOptions(args);
        pTrainingData->load(_trainFileName, IT_TRAIN, 5);

        InputData* pBootstrapData = NULL;
        if (!_bootstrapFileName.empty()) {
            pBootstrapData = pWeakHypothesisSource->createInputData();
            pBootstrapData->initOptions(args);
            pBootstrapData->load(_bootstrapFileName, IT_TRAIN, 5);
        }
        
        // get the testing input data, and load it
        InputData* pTestData = NULL;
        if ( !_testFileName.empty() )
        {
            pTestData = pWeakHypothesisSource->createInputData();
            pTestData->initOptions(args);
            pTestData->load(_testFileName, IT_TEST, 5);
        }

        Serialization ss(_shypFileName, false );
        ss.writeHeader(_baseLearnerName);
        
        
//        outputHeader();
        // The output information object
        OutputInfo* pOutInfo = NULL;

        if ( !_outputInfoFile.empty() ) 
        {
            pOutInfo = new OutputInfo(args, true);
            pOutInfo->setOutputList("sca", &args);
            
            pOutInfo->initialize(pTrainingData);
            
            if (pTestData)
                pOutInfo->initialize(pTestData);
            pOutInfo->outputHeader(pTrainingData->getClassMap(), true, true, false);
            pOutInfo->outputUserHeader("thresh");
            pOutInfo->headerEndLine();
        }
        
        
//        ofstream trainPosteriorsFile;
//        ofstream testPosteriorsFile;
        
        
        const NameMap& namemap = pTrainingData->getClassMap();
        _positiveLabelIndex = namemap.getIdxFromName(_positiveLabelName);

        // FIXME: output posteriors

//        OutputInfo* pTrainPosteriorsOut = NULL;
//        OutputInfo* pTestPosteriorsOut = NULL;
        
//        if (! _trainPosteriorsFileName.empty()) {
//            pTrainPosteriorsOut = new OutputInfo(_trainPosteriorsFileName, "pos", true);
//            pTrainPosteriorsOut->initialize(pTrainingData);
//            dynamic_cast<PosteriorsOutput*>( pTrainPosteriorsOut->getOutputInfoObject("pos") )->addClassIndex(_positiveLabelIndex );
//        }
        
//        if (! _testPosteriorsFileName.empty() && !_testFileName.empty() ) {
//            pTestPosteriorsOut = new OutputInfo(_testPosteriorsFileName, "pos", true);
//            pTestPosteriorsOut->initialize(pTestData);
//            dynamic_cast<PosteriorsOutput*>( pTestPosteriorsOut->getOutputInfoObject("pos") )->addClassIndex(_positiveLabelIndex );            
//        }
        
        const int numExamples = pTrainingData->getNumExamples();

        vector<BaseLearner*> inWeakHypotheses;
        
        if (_fullRun) {            
            // TODO : the full training is implementet, testing is needed
            AdaBoostMHLearner* sHypothesis = new AdaBoostMHLearner();
            sHypothesis->run(args, pTrainingData, _baseLearnerName, _numIterations, inWeakHypotheses );
            delete sHypothesis;
//.........这里部分代码省略.........
开发者ID:junjiek,项目名称:cmu-exp,代码行数:101,代码来源:SoftCascadeLearner.cpp


注:本文中的OutputInfo::setOutputList方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。