当前位置: 首页>>代码示例>>C++>>正文


C++ OutputInfo::outputIteration方法代码示例

本文整理汇总了C++中OutputInfo::outputIteration方法的典型用法代码示例。如果您正苦于以下问题:C++ OutputInfo::outputIteration方法的具体用法?C++ OutputInfo::outputIteration怎么用?C++ OutputInfo::outputIteration使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在OutputInfo的用法示例。


在下文中一共展示了OutputInfo::outputIteration方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: saveLikelihoods

	void AdaBoostMHClassifier::saveLikelihoods(const string& dataFileName, const string& shypFileName, 
		const string& outFileName, int numIterations)
	{
		InputData* pData = loadInputData(dataFileName, shypFileName);

		if (_verbose > 0)
			cout << "Loading strong hypothesis..." << flush;

		// The class that loads the weak hypotheses
		UnSerialization us;

		// Where to put the weak hypotheses
		vector<BaseLearner*> weakHypotheses;

		// loads them
		us.loadHypotheses(shypFileName, weakHypotheses, pData);

		// where the results go
		vector< ExampleResults* > results;

		if (_verbose > 0)
			cout << "Classifying..." << flush;

		const int numClasses = pData->getNumClasses();
		const int numExamples = pData->getNumExamples();


		ofstream outFile(outFileName.c_str());
		string exampleName;

		if (_verbose > 0)
			cout << "Output likelihoods..." << flush;

		// get the results
		/////////////////////////////////////////////////////////////////////
		// computeResults( pData, weakHypotheses, results, numIterations );
		assert( !weakHypotheses.empty() );

		// Initialize the output info
		OutputInfo* pOutInfo = NULL;

		if ( !_outputInfoFile.empty() )
			pOutInfo = new OutputInfo(_outputInfoFile);

		// Creating the results structures. See file Structures.h for the
		// PointResults structure
		results.clear();
		results.reserve(numExamples);
		for (int i = 0; i < numExamples; ++i)
			results.push_back( new ExampleResults(i, numClasses) );

		// sum votes for classes
		vector< float > votesForExamples( numClasses );
		vector< double > expVotesForExamples( numClasses );

		// iterator over all the weak hypotheses
		vector<BaseLearner*>::const_iterator whyIt;
		int t;

		pOutInfo->initialize( pData );

		// for every feature: 1..T
		for (whyIt = weakHypotheses.begin(), t = 0; 
			whyIt != weakHypotheses.end() && t < numIterations; ++whyIt, ++t)
		{
			BaseLearner* currWeakHyp = *whyIt;
			float alpha = currWeakHyp->getAlpha();

			// for every point
			for (int i = 0; i < numExamples; ++i)
			{
				// a reference for clarity and speed
				vector<float>& currVotesVector = results[i]->getVotesVector();

				// for every class
				for (int l = 0; l < numClasses; ++l)
					currVotesVector[l] += alpha * currWeakHyp->classify(pData, i, l);
			}

			// if needed output the step-by-step information
			if ( pOutInfo )
			{
				pOutInfo->outputIteration(t);
				pOutInfo->outputError(pData, currWeakHyp);

				// Margins and edge requires an update of the weight,
				// therefore I keep them out for the moment
				//outInfo.outputMargins(pData, currWeakHyp);
				//outInfo.outputEdge(pData, currWeakHyp);
				pOutInfo->endLine();
			} // for (int i = 0; i < numExamples; ++i)
			// calculate likelihoods from votes

			fill( votesForExamples.begin(), votesForExamples.end(), 0.0 );
			double lLambda = 0.0;
			for (int i = 0; i < numExamples; ++i)
			{
				// a reference for clarity and speed
				vector<float>& currVotesVector = results[i]->getVotesVector();
				double sumExp = 0.0;
//.........这里部分代码省略.........
开发者ID:ShenWei,项目名称:src,代码行数:101,代码来源:AdaBoostMHClassifier.cpp

示例2: computeResults

	// Returns the results into ptRes
	void AdaBoostMHClassifier::computeResults(InputData* pData, vector<BaseLearner*>& weakHypotheses, 
		vector< ExampleResults* >& results, int numIterations)
	{
		assert( !weakHypotheses.empty() );

		const int numClasses = pData->getNumClasses();
		const int numExamples = pData->getNumExamples();

		// Initialize the output info
		OutputInfo* pOutInfo = NULL;
        
        if ( !_outputInfoFile.empty() )
		{
            string metricnames;
			if ( _args.getNumValues("outputinfo") > 1 ) 
			{
				_args.getValue("outputinfo", 1, metricnames);
			} 
            else 
            {
                metricnames = "e01hamauc";
			}
            pOutInfo = new OutputInfo(_outputInfoFile, metricnames);
		}
        

		// Creating the results structures. See file Structures.h for the
		// PointResults structure
		results.clear();
		results.reserve(numExamples);
		for (int i = 0; i < numExamples; ++i)
			results.push_back( new ExampleResults(i, numClasses) );

		// iterator over all the weak hypotheses
		vector<BaseLearner*>::const_iterator whyIt;
		int t;

		if ( pOutInfo )
        {
			pOutInfo->initialize( pData );
            pOutInfo->outputHeader(pData->getClassMap(), 
                                  true, // output iterations
                                  false, // output time
                                  true // endline
                                  );
        }

		// for every feature: 1..T
		for (whyIt = weakHypotheses.begin(), t = 0; 
			whyIt != weakHypotheses.end() && t < numIterations; ++whyIt, ++t)
		{
			BaseLearner* currWeakHyp = *whyIt;
			AlphaReal alpha = currWeakHyp->getAlpha();

			// for every point
			for (int i = 0; i < numExamples; ++i)
			{
				// a reference for clarity and speed
				vector<AlphaReal>& currVotesVector = results[i]->getVotesVector();

				// for every class
				for (int l = 0; l < numClasses; ++l)
					currVotesVector[l] += alpha * currWeakHyp->classify(pData, i, l);
			}

			// if needed output the step-by-step information
			if ( pOutInfo )
			{
				pOutInfo->outputIteration(t);
//				pOutInfo->outputError(pData, currWeakHyp);
//				pOutInfo->outTPRFPR(pData);
				//pOutInfo->outputBalancedError(pData, currWeakHyp);
//				if ( ( t % 1 ) == 0 ) {
//					pOutInfo->outputROC(pData);
//				}
                    
                pOutInfo->outputCustom(pData, currWeakHyp);
				// Margins and edge requires an update of the weight,
				// therefore I keep them out for the moment
				//outInfo.outputMargins(pData, currWeakHyp);
				//outInfo.outputEdge(pData, currWeakHyp);
				pOutInfo->endLine();
			}
		}

		if (pOutInfo)
			delete pOutInfo;

	}
开发者ID:wxwidget,项目名称:multiboost,代码行数:90,代码来源:AdaBoostMHClassifier.cpp

示例3: run

	void FilterBoostLearner::run(const nor_utils::Args& args)
	{
		// load the arguments
		this->getArgs(args);

		time_t startTime, currentTime;
		time(&startTime);

		// get the registered weak learner (type from name)
		BaseLearner* pWeakHypothesisSource = 
			BaseLearner::RegisteredLearners().getLearner(_baseLearnerName);
		// initialize learning options; normally it's done in the strong loop
		// also, here we do it for Product learners, so input data can be created
		pWeakHypothesisSource->initLearningOptions(args);

		BaseLearner* pConstantWeakHypothesisSource = 
			BaseLearner::RegisteredLearners().getLearner("ConstantLearner");

		// get the training input data, and load it

		InputData* pTrainingData = pWeakHypothesisSource->createInputData();
		pTrainingData->initOptions(args);
		pTrainingData->load(_trainFileName, IT_TRAIN, _verbose);

		const int numClasses = pTrainingData->getNumClasses();
		const int numExamples = pTrainingData->getNumExamples();
		
		//initialize the margins variable
		_margins.resize( numExamples );
		for( int i=0; i<numExamples; i++ )
		{
			_margins[i].resize( numClasses );
			fill( _margins[i].begin(), _margins[i].end(), 0.0 );
		}


		// get the testing input data, and load it
		InputData* pTestData = NULL;
		if ( !_testFileName.empty() )
		{
			pTestData = pWeakHypothesisSource->createInputData();
			pTestData->initOptions(args);
			pTestData->load(_testFileName, IT_TEST, _verbose);
		}

		// The output information object
		OutputInfo* pOutInfo = NULL;


		if ( !_outputInfoFile.empty() ) 
		{
			// Baseline: constant classifier - goes into 0th iteration

			BaseLearner* pConstantWeakHypothesis = pConstantWeakHypothesisSource->create() ;
			pConstantWeakHypothesis->initLearningOptions(args);
			pConstantWeakHypothesis->setTrainingData(pTrainingData);
			float constantEnergy = pConstantWeakHypothesis->run();

			pOutInfo = new OutputInfo(_outputInfoFile);
			pOutInfo->initialize(pTrainingData);

			updateMargins( pTrainingData, pConstantWeakHypothesis );

			if (pTestData)
				pOutInfo->initialize(pTestData);
			pOutInfo->outputHeader();

			pOutInfo->outputIteration(-1);
			pOutInfo->outputError(pTrainingData, pConstantWeakHypothesis);

			if (pTestData)
				pOutInfo->outputError(pTestData, pConstantWeakHypothesis);
			/*
			pOutInfo->outputMargins(pTrainingData, pConstantWeakHypothesis);
			
			pOutInfo->outputEdge(pTrainingData, pConstantWeakHypothesis);

			if (pTestData)
				pOutInfo->outputMargins(pTestData, pConstantWeakHypothesis);

			pOutInfo->outputMAE(pTrainingData);

			if (pTestData)
				pOutInfo->outputMAE(pTestData);
			*/
			pOutInfo->outputCurrentTime();

			pOutInfo->endLine();
			pOutInfo->initialize(pTrainingData);
			
			if (pTestData)
				pOutInfo->initialize(pTestData);
		}
		// reload the previously found weak learners if -resume is set. 
		// otherwise just return 0
		int startingIteration = resumeWeakLearners(pTrainingData);


		Serialization ss(_shypFileName, _isShypCompressed );
		ss.writeHeader(_baseLearnerName); // this must go after resumeProcess has been called
//.........这里部分代码省略.........
开发者ID:ShenWei,项目名称:src,代码行数:101,代码来源:FilterBoostLearner.cpp

示例4: run

    void FilterBoostLearner::run(const nor_utils::Args& args)
    {
        // load the arguments
        this->getArgs(args);

        time_t startTime, currentTime;
        time(&startTime);

        // get the registered weak learner (type from name)
        BaseLearner* pWeakHypothesisSource = 
            BaseLearner::RegisteredLearners().getLearner(_baseLearnerName);
        // initialize learning options; normally it's done in the strong loop
        // also, here we do it for Product learners, so input data can be created
        pWeakHypothesisSource->initLearningOptions(args);

        BaseLearner* pConstantWeakHypothesisSource = 
            BaseLearner::RegisteredLearners().getLearner("ConstantLearner");

        // get the training input data, and load it

        InputData* pTrainingData = pWeakHypothesisSource->createInputData();
        pTrainingData->initOptions(args);
        pTrainingData->load(_trainFileName, IT_TRAIN, _verbose);

        const int numClasses = pTrainingData->getNumClasses();
        const int numExamples = pTrainingData->getNumExamples();
                
        //initialize the margins variable
        _margins.resize( numExamples );
        for( int i=0; i<numExamples; i++ )
        {
            _margins[i].resize( numClasses );
            fill( _margins[i].begin(), _margins[i].end(), 0.0 );
        }


        // get the testing input data, and load it
        InputData* pTestData = NULL;
        if ( !_testFileName.empty() )
        {
            pTestData = pWeakHypothesisSource->createInputData();
            pTestData->initOptions(args);
            pTestData->load(_testFileName, IT_TEST, _verbose);
        }

        // The output information object
        OutputInfo* pOutInfo = NULL;


        if ( !_outputInfoFile.empty() ) 
        {
            // Baseline: constant classifier - goes into 0th iteration

            BaseLearner* pConstantWeakHypothesis = pConstantWeakHypothesisSource->create() ;
            pConstantWeakHypothesis->initLearningOptions(args);
            pConstantWeakHypothesis->setTrainingData(pTrainingData);
            AlphaReal constantEnergy = pConstantWeakHypothesis->run();

            pOutInfo = new OutputInfo(args);
            pOutInfo->initialize(pTrainingData);

            updateMargins( pTrainingData, pConstantWeakHypothesis );

            if (pTestData)
                pOutInfo->initialize(pTestData);
            pOutInfo->outputHeader(pTrainingData->getClassMap() );

            pOutInfo->outputIteration(-1);
            pOutInfo->outputCustom(pTrainingData, pConstantWeakHypothesis);

            if (pTestData)
            {
                pOutInfo->separator();
                pOutInfo->outputCustom(pTestData, pConstantWeakHypothesis);
            }
                        
            pOutInfo->outputCurrentTime();

            pOutInfo->endLine();
            pOutInfo->initialize(pTrainingData);
                        
            if (pTestData)
                pOutInfo->initialize(pTestData);
        }
        // reload the previously found weak learners if -resume is set. 
        // otherwise just return 0
        int startingIteration = resumeWeakLearners(pTrainingData);


        Serialization ss(_shypFileName, _isShypCompressed );
        ss.writeHeader(_baseLearnerName); // this must go after resumeProcess has been called

        // perform the resuming if necessary. If not it will just return
        resumeProcess(ss, pTrainingData, pTestData, pOutInfo);

        if (_verbose == 1)
            cout << "Learning in progress..." << endl;
                                
        ///////////////////////////////////////////////////////////////////////
        // Starting the AdaBoost main loop
//.........这里部分代码省略.........
开发者ID:junjiek,项目名称:cmu-exp,代码行数:101,代码来源:FilterBoostLearner.cpp

示例5: run

	void AdaBoostMHLearner::run(const nor_utils::Args& args)
	{
		// load the arguments
		this->getArgs(args);

		// get the registered weak learner (type from name)
		BaseLearner* pWeakHypothesisSource = 
			BaseLearner::RegisteredLearners().getLearner(_baseLearnerName);
		// initialize learning options; normally it's done in the strong loop
		// also, here we do it for Product learners, so input data can be created
		pWeakHypothesisSource->initLearningOptions(args);

		BaseLearner* pConstantWeakHypothesisSource = 
			BaseLearner::RegisteredLearners().getLearner("ConstantLearner");

		// get the training input data, and load it

		InputData* pTrainingData = pWeakHypothesisSource->createInputData();
		pTrainingData->initOptions(args);
		pTrainingData->load(_trainFileName, IT_TRAIN, _verbose);
		
		// get the testing input data, and load it
		InputData* pTestData = NULL;
		if ( !_testFileName.empty() )
		{
			pTestData = pWeakHypothesisSource->createInputData();
			pTestData->initOptions(args);
			pTestData->load(_testFileName, IT_TEST, _verbose);
		}

		// The output information object
		OutputInfo* pOutInfo = NULL;


		if ( !_outputInfoFile.empty() ) 
		{
			// Baseline: constant classifier - goes into 0th iteration

			BaseLearner* pConstantWeakHypothesis = pConstantWeakHypothesisSource->create() ;
			pConstantWeakHypothesis->initLearningOptions(args);
			pConstantWeakHypothesis->setTrainingData(pTrainingData);
			AlphaReal constantEnergy = pConstantWeakHypothesis->run();

			//pOutInfo = new OutputInfo(_outputInfoFile);
            pOutInfo = new OutputInfo(args);
			pOutInfo->initialize(pTrainingData);

			if (pTestData)
				pOutInfo->initialize(pTestData);
			pOutInfo->outputHeader(pTrainingData->getClassMap());

			pOutInfo->outputIteration(-1);
            pOutInfo->outputCustom(pTrainingData, pConstantWeakHypothesis);
            
			if (pTestData != NULL)
            {
                pOutInfo->separator();
                pOutInfo->outputCustom(pTestData, pConstantWeakHypothesis);   
            }

			pOutInfo->outputCurrentTime();

			pOutInfo->endLine(); 
			pOutInfo->initialize(pTrainingData);

			if (pTestData)
				pOutInfo->initialize(pTestData);
		}
		//cout << "Before serialization" << endl;
		// reload the previously found weak learners if -resume is set. 
		// otherwise just return 0
		int startingIteration = resumeWeakLearners(pTrainingData);


		Serialization ss(_shypFileName, _isShypCompressed );
		ss.writeHeader(_baseLearnerName); // this must go after resumeProcess has been called

		// perform the resuming if necessary. If not it will just return
		resumeProcess(ss, pTrainingData, pTestData, pOutInfo);

		if (_verbose == 1)
			cout << "Learning in progress..." << endl;

		//I put here the starting time, but it may take very long time to load the saved model
		time_t startTime, currentTime;
		time(&startTime);

		///////////////////////////////////////////////////////////////////////
		// Starting the AdaBoost main loop
		///////////////////////////////////////////////////////////////////////
		for (int t = startingIteration; t < _numIterations; ++t)
		{
			if (_verbose > 1)
				cout << "------- WORKING ON ITERATION " << (t+1) << " -------" << endl;

			BaseLearner* pWeakHypothesis = pWeakHypothesisSource->create();
			pWeakHypothesis->initLearningOptions(args);
			//pTrainingData->clearIndexSet();

			pWeakHypothesis->setTrainingData(pTrainingData);
//.........这里部分代码省略.........
开发者ID:busarobi,项目名称:MDDAG2,代码行数:101,代码来源:AdaBoostMHLearner.cpp


注:本文中的OutputInfo::outputIteration方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。