本文整理汇总了C++中OpArg类的典型用法代码示例。如果您正苦于以下问题:C++ OpArg类的具体用法?C++ OpArg怎么用?C++ OpArg使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了OpArg类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: CheckIfSafeAddress
FixupBranch EmuCodeBlock::CheckIfSafeAddress(const OpArg& reg_value, X64Reg reg_addr,
BitSet32 registers_in_use)
{
registers_in_use[reg_addr] = true;
if (reg_value.IsSimpleReg())
registers_in_use[reg_value.GetSimpleReg()] = true;
// Get ourselves two free registers
if (registers_in_use[RSCRATCH])
PUSH(RSCRATCH);
if (registers_in_use[RSCRATCH_EXTRA])
PUSH(RSCRATCH_EXTRA);
if (reg_addr != RSCRATCH_EXTRA)
MOV(32, R(RSCRATCH_EXTRA), R(reg_addr));
// Perform lookup to see if we can use fast path.
MOV(64, R(RSCRATCH), ImmPtr(&PowerPC::dbat_table[0]));
SHR(32, R(RSCRATCH_EXTRA), Imm8(PowerPC::BAT_INDEX_SHIFT));
TEST(32, MComplex(RSCRATCH, RSCRATCH_EXTRA, SCALE_4, 0), Imm32(PowerPC::BAT_PHYSICAL_BIT));
if (registers_in_use[RSCRATCH_EXTRA])
POP(RSCRATCH_EXTRA);
if (registers_in_use[RSCRATCH])
POP(RSCRATCH);
return J_CC(CC_Z, m_far_code.Enabled());
}
示例2: memset
void GPRRegCache::Start(MIPSState *mips, MIPSAnalyst::AnalysisResults &stats) {
this->mips = mips;
for (int i = 0; i < NUM_X_REGS; i++) {
xregs[i].free = true;
xregs[i].dirty = false;
xregs[i].allocLocked = false;
}
memset(regs, 0, sizeof(regs));
OpArg base = GetDefaultLocation(MIPS_REG_ZERO);
for (int i = 0; i < NUM_MIPS_GPRS; i++) {
regs[i].location = base;
base.IncreaseOffset(sizeof(u32));
}
// todo: sort to find the most popular regs
/*
int maxPreload = 2;
for (int i = 0; i < NUM_MIPS_GPRS; i++)
{
if (stats.numReads[i] > 2 || stats.numWrites[i] >= 2)
{
LoadToX64(i, true, false); //stats.firstRead[i] <= stats.firstWrite[i], false);
maxPreload--;
if (!maxPreload)
break;
}
}*/
//Find top regs - preload them (load bursts ain't bad)
//But only preload IF written OR reads >= 3
}
示例3: GetWritableCodePtr
void EmuCodeBlock::UnsafeWriteRegToReg(OpArg reg_value, X64Reg reg_addr, int accessSize, s32 offset,
bool swap, MovInfo* info)
{
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = false;
}
OpArg dest = MComplex(RMEM, reg_addr, SCALE_1, offset);
if (reg_value.IsImm())
{
if (swap)
reg_value = SwapImmediate(accessSize, reg_value);
MOV(accessSize, dest, reg_value);
}
else if (swap)
{
SwapAndStore(accessSize, dest, reg_value.GetSimpleReg(), info);
}
else
{
MOV(accessSize, dest, reg_value);
}
}
示例4: DoSlowWrite
void JitSafeMem::DoSlowWrite(const void *safeFunc, const OpArg& src, int suboffset)
{
if (iaddr_ != (u32) -1)
jit_->MOV(32, R(EAX), Imm32((iaddr_ + suboffset) & alignMask_));
else
{
jit_->LEA(32, EAX, MDisp(xaddr_, offset_ + suboffset));
if (alignMask_ != 0xFFFFFFFF)
jit_->AND(32, R(EAX), Imm32(alignMask_));
}
#ifdef _M_IX86
jit_->PUSH(EDX);
#endif
if (!src.IsSimpleReg(EDX)) {
jit_->MOV(32, R(EDX), src);
}
if (!g_Config.bIgnoreBadMemAccess) {
jit_->MOV(32, M(&jit_->mips_->pc), Imm32(jit_->GetCompilerPC()));
}
// This is a special jit-ABI'd function.
jit_->CALL(safeFunc);
#ifdef _M_IX86
jit_->POP(EDX);
#endif
needsCheck_ = true;
}
示例5: memcpy
void GPRRegCache::Start(MIPSState *mips, MIPSComp::JitState *js, MIPSComp::JitOptions *jo, MIPSAnalyst::AnalysisResults &stats) {
#ifdef _M_X64
if (allocationOrderR15[0] == INVALID_REG) {
memcpy(allocationOrderR15, allocationOrder, sizeof(allocationOrder));
allocationOrderR15[ARRAY_SIZE(allocationOrderR15) - 1] = R15;
}
#endif
this->mips = mips;
for (int i = 0; i < NUM_X_REGS; i++) {
xregs[i].free = true;
xregs[i].dirty = false;
xregs[i].allocLocked = false;
}
memset(regs, 0, sizeof(regs));
OpArg base = GetDefaultLocation(MIPS_REG_ZERO);
for (int i = 0; i < 32; i++) {
regs[i].location = base;
base.IncreaseOffset(sizeof(u32));
}
for (int i = 32; i < NUM_MIPS_GPRS; i++) {
regs[i].location = GetDefaultLocation(MIPSGPReg(i));
}
SetImm(MIPS_REG_ZERO, 0);
// todo: sort to find the most popular regs
/*
int maxPreload = 2;
for (int i = 0; i < NUM_MIPS_GPRS; i++)
{
if (stats.numReads[i] > 2 || stats.numWrites[i] >= 2)
{
LoadToX64(i, true, false); //stats.firstRead[i] <= stats.firstWrite[i], false);
maxPreload--;
if (!maxPreload)
break;
}
}*/
//Find top regs - preload them (load bursts ain't bad)
//But only preload IF written OR reads >= 3
js_ = js;
jo_ = jo;
}
示例6: memset
void FPURegCache::SetupInitialRegs() {
for (int i = 0; i < NUM_X_FPREGS; i++) {
memset(xregsInitial[i].mipsRegs, -1, sizeof(xregsInitial[i].mipsRegs));
xregsInitial[i].dirty = false;
}
memset(regsInitial, 0, sizeof(regsInitial));
OpArg base = GetDefaultLocation(0);
for (int i = 0; i < 32; i++) {
regsInitial[i].location = base;
base.IncreaseOffset(sizeof(float));
}
for (int i = 32; i < 32 + 128; i++) {
regsInitial[i].location = GetDefaultLocation(i);
}
base = GetDefaultLocation(32 + 128);
for (int i = 32 + 128; i < NUM_MIPS_FPRS; i++) {
regsInitial[i].location = base;
base.IncreaseOffset(sizeof(float));
}
}
示例7: UnsafeLoadToReg
bool EmuCodeBlock::UnsafeLoadToReg(X64Reg reg_value, OpArg opAddress, int accessSize, s32 offset,
bool signExtend, MovInfo* info)
{
bool offsetAddedToAddress = false;
OpArg memOperand;
if (opAddress.IsSimpleReg())
{
// Deal with potential wraparound. (This is just a heuristic, and it would
// be more correct to actually mirror the first page at the end, but the
// only case where it probably actually matters is JitIL turning adds into
// offsets with the wrong sign, so whatever. Since the original code
// *could* try to wrap an address around, however, this is the correct
// place to address the issue.)
if ((u32)offset >= 0x1000)
{
// This method can potentially clobber the address if it shares a register
// with the load target. In this case we can just subtract offset from the
// register (see Jit64Base for this implementation).
offsetAddedToAddress = (reg_value == opAddress.GetSimpleReg());
LEA(32, reg_value, MDisp(opAddress.GetSimpleReg(), offset));
opAddress = R(reg_value);
offset = 0;
}
memOperand = MComplex(RMEM, opAddress.GetSimpleReg(), SCALE_1, offset);
}
else if (opAddress.IsImm())
{
MOV(32, R(reg_value), Imm32((u32)(opAddress.Imm32() + offset)));
memOperand = MRegSum(RMEM, reg_value);
}
else
{
MOV(32, R(reg_value), opAddress);
memOperand = MComplex(RMEM, reg_value, SCALE_1, offset);
}
LoadAndSwap(accessSize, reg_value, memOperand, signExtend, info);
return offsetAddedToAddress;
}
示例8: _mm_set_epi32
int VertexLoaderX64::ReadVertex(OpArg data, u64 attribute, int format, int count_in, int count_out, bool dequantize, u8 scaling_exponent, AttributeFormat* native_format)
{
static const __m128i shuffle_lut[5][3] = {
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF00L), // 1x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L), // 2x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L)}, // 3x u8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00FFFFFFL), // 1x s8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL), // 2x s8
_mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL)}, // 3x s8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0001L), // 1x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L), // 2x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L)}, // 3x u16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x0001FFFFL), // 1x s16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL), // 2x s16
_mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL)}, // 3x s16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00010203L), // 1x float
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x04050607L, 0x00010203L), // 2x float
_mm_set_epi32(0xFFFFFFFFL, 0x08090A0BL, 0x04050607L, 0x00010203L)}, // 3x float
};
static const __m128 scale_factors[32] = {
_mm_set_ps1(1./(1u<< 0)), _mm_set_ps1(1./(1u<< 1)), _mm_set_ps1(1./(1u<< 2)), _mm_set_ps1(1./(1u<< 3)),
_mm_set_ps1(1./(1u<< 4)), _mm_set_ps1(1./(1u<< 5)), _mm_set_ps1(1./(1u<< 6)), _mm_set_ps1(1./(1u<< 7)),
_mm_set_ps1(1./(1u<< 8)), _mm_set_ps1(1./(1u<< 9)), _mm_set_ps1(1./(1u<<10)), _mm_set_ps1(1./(1u<<11)),
_mm_set_ps1(1./(1u<<12)), _mm_set_ps1(1./(1u<<13)), _mm_set_ps1(1./(1u<<14)), _mm_set_ps1(1./(1u<<15)),
_mm_set_ps1(1./(1u<<16)), _mm_set_ps1(1./(1u<<17)), _mm_set_ps1(1./(1u<<18)), _mm_set_ps1(1./(1u<<19)),
_mm_set_ps1(1./(1u<<20)), _mm_set_ps1(1./(1u<<21)), _mm_set_ps1(1./(1u<<22)), _mm_set_ps1(1./(1u<<23)),
_mm_set_ps1(1./(1u<<24)), _mm_set_ps1(1./(1u<<25)), _mm_set_ps1(1./(1u<<26)), _mm_set_ps1(1./(1u<<27)),
_mm_set_ps1(1./(1u<<28)), _mm_set_ps1(1./(1u<<29)), _mm_set_ps1(1./(1u<<30)), _mm_set_ps1(1./(1u<<31)),
};
X64Reg coords = XMM0;
int elem_size = 1 << (format / 2);
int load_bytes = elem_size * count_in;
OpArg dest = MDisp(dst_reg, m_dst_ofs);
native_format->components = count_out;
native_format->enable = true;
native_format->offset = m_dst_ofs;
native_format->type = VAR_FLOAT;
native_format->integer = false;
m_dst_ofs += sizeof(float) * count_out;
if (attribute == DIRECT)
m_src_ofs += load_bytes;
if (cpu_info.bSSSE3)
{
if (load_bytes > 8)
MOVDQU(coords, data);
else if (load_bytes > 4)
MOVQ_xmm(coords, data);
else
MOVD_xmm(coords, data);
PSHUFB(coords, MPIC(&shuffle_lut[format][count_in - 1]));
// Sign-extend.
if (format == FORMAT_BYTE)
PSRAD(coords, 24);
if (format == FORMAT_SHORT)
PSRAD(coords, 16);
}
else
{
// SSE2
X64Reg temp = XMM1;
switch (format)
{
case FORMAT_UBYTE:
MOVD_xmm(coords, data);
PXOR(temp, R(temp));
PUNPCKLBW(coords, R(temp));
PUNPCKLWD(coords, R(temp));
break;
case FORMAT_BYTE:
MOVD_xmm(coords, data);
PUNPCKLBW(coords, R(coords));
PUNPCKLWD(coords, R(coords));
PSRAD(coords, 24);
break;
case FORMAT_USHORT:
case FORMAT_SHORT:
switch (count_in)
{
case 1:
LoadAndSwap(32, scratch3, data);
MOVD_xmm(coords, R(scratch3)); // ......X.
break;
case 2:
LoadAndSwap(32, scratch3, data);
MOVD_xmm(coords, R(scratch3)); // ......XY
PSHUFLW(coords, R(coords), 0x24); // ....Y.X.
break;
case 3:
LoadAndSwap(64, scratch3, data);
MOVQ_xmm(coords, R(scratch3)); // ....XYZ.
PUNPCKLQDQ(coords, R(coords)); // ..Z.XYZ.
PSHUFLW(coords, R(coords), 0xAC); // ..Z.Y.X.
//.........这里部分代码省略.........
示例9: ABI_PushRegistersAndAdjustStack
void VertexLoaderX64::GenerateVertexLoader()
{
BitSet32 regs = {src_reg, dst_reg, scratch1, scratch2, scratch3, count_reg, skipped_reg, base_reg};
regs &= ABI_ALL_CALLEE_SAVED;
ABI_PushRegistersAndAdjustStack(regs, 0);
// Backup count since we're going to count it down.
PUSH(32, R(ABI_PARAM3));
// ABI_PARAM3 is one of the lower registers, so free it for scratch2.
MOV(32, R(count_reg), R(ABI_PARAM3));
MOV(64, R(base_reg), R(ABI_PARAM4));
if (m_VtxDesc.Position & MASK_INDEXED)
XOR(32, R(skipped_reg), R(skipped_reg));
// TODO: load constants into registers outside the main loop
const u8* loop_start = GetCodePtr();
if (m_VtxDesc.PosMatIdx)
{
MOVZX(32, 8, scratch1, MDisp(src_reg, m_src_ofs));
AND(32, R(scratch1), Imm8(0x3F));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
// zfreeze
CMP(32, R(count_reg), Imm8(3));
FixupBranch dont_store = J_CC(CC_A);
MOV(32, MPIC(VertexLoaderManager::position_matrix_index - 1, count_reg, SCALE_4), R(scratch1));
SetJumpTarget(dont_store);
m_native_components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = m_dst_ofs;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
m_src_ofs += sizeof(u8);
m_dst_ofs += sizeof(u32);
}
u32 texmatidx_ofs[8];
const u64 tm[8] = {
m_VtxDesc.Tex0MatIdx, m_VtxDesc.Tex1MatIdx, m_VtxDesc.Tex2MatIdx, m_VtxDesc.Tex3MatIdx,
m_VtxDesc.Tex4MatIdx, m_VtxDesc.Tex5MatIdx, m_VtxDesc.Tex6MatIdx, m_VtxDesc.Tex7MatIdx,
};
for (int i = 0; i < 8; i++)
{
if (tm[i])
texmatidx_ofs[i] = m_src_ofs++;
}
OpArg data = GetVertexAddr(ARRAY_POSITION, m_VtxDesc.Position);
int pos_elements = 2 + m_VtxAttr.PosElements;
ReadVertex(data, m_VtxDesc.Position, m_VtxAttr.PosFormat, pos_elements, pos_elements,
m_VtxAttr.ByteDequant, m_VtxAttr.PosFrac, &m_native_vtx_decl.position);
if (m_VtxDesc.Normal)
{
static const u8 map[8] = { 7, 6, 15, 14 };
u8 scaling_exponent = map[m_VtxAttr.NormalFormat];
for (int i = 0; i < (m_VtxAttr.NormalElements ? 3 : 1); i++)
{
if (!i || m_VtxAttr.NormalIndex3)
{
data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.Normal);
int elem_size = 1 << (m_VtxAttr.NormalFormat / 2);
data.AddMemOffset(i * elem_size * 3);
}
data.AddMemOffset(ReadVertex(data, m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3,
true, scaling_exponent, &m_native_vtx_decl.normals[i]));
}
m_native_components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements)
m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
const u64 col[2] = { m_VtxDesc.Color0, m_VtxDesc.Color1 };
for (int i = 0; i < 2; i++)
{
if (col[i])
{
data = GetVertexAddr(ARRAY_COLOR + i, col[i]);
ReadColor(data, col[i], m_VtxAttr.color[i].Comp);
m_native_components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].enable = true;
m_native_vtx_decl.colors[i].offset = m_dst_ofs;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
m_dst_ofs += 4;
}
}
const u64 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
//.........这里部分代码省略.........
示例10: R
void VertexLoaderX64::ReadColor(OpArg data, u64 attribute, int format)
{
int load_bytes = 0;
switch (format)
{
case FORMAT_24B_888:
case FORMAT_32B_888x:
case FORMAT_32B_8888:
MOV(32, R(scratch1), data);
if (format != FORMAT_32B_8888)
OR(32, R(scratch1), Imm32(0xFF000000));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
load_bytes = 3 + (format != FORMAT_24B_888);
break;
case FORMAT_16B_565:
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI1 && cpu_info.bBMI2)
{
MOV(32, R(scratch2), Imm32(0x07C3F7C0));
PDEP(32, scratch3, scratch1, R(scratch2));
MOV(32, R(scratch2), Imm32(0xF8FCF800));
PDEP(32, scratch1, scratch1, R(scratch2));
ANDN(32, scratch2, scratch2, R(scratch3));
OR(32, R(scratch1), R(scratch2));
}
else
{
MOV(32, R(scratch3), R(scratch1));
SHL(32, R(scratch1), Imm8(16));
AND(32, R(scratch1), Imm32(0xF8000000));
MOV(32, R(scratch2), R(scratch3));
SHL(32, R(scratch2), Imm8(13));
AND(32, R(scratch2), Imm32(0x00FC0000));
OR(32, R(scratch1), R(scratch2));
SHL(32, R(scratch3), Imm8(11));
AND(32, R(scratch3), Imm32(0x0000F800));
OR(32, R(scratch1), R(scratch3));
MOV(32, R(scratch2), R(scratch1));
SHR(32, R(scratch1), Imm8(5));
AND(32, R(scratch1), Imm32(0x07000700));
OR(32, R(scratch1), R(scratch2));
SHR(32, R(scratch2), Imm8(6));
AND(32, R(scratch2), Imm32(0x00030000));
OR(32, R(scratch1), R(scratch2));
}
OR(32, R(scratch1), Imm32(0x000000FF));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case FORMAT_16B_4444:
// RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI2)
{
MOV(32, R(scratch2), Imm32(0x0F0F0F0F));
PDEP(32, scratch1, scratch1, R(scratch2));
}
else
{
MOV(32, R(scratch2), R(scratch1));
SHL(32, R(scratch1), Imm8(8));
OR(32, R(scratch1), R(scratch2));
AND(32, R(scratch1), Imm32(0x00FF00FF));
MOV(32, R(scratch2), R(scratch1));
SHL(32, R(scratch1), Imm8(4));
OR(32, R(scratch1), R(scratch2));
AND(32, R(scratch1), Imm32(0x0F0F0F0F));
}
MOV(32, R(scratch2), R(scratch1));
SHL(32, R(scratch1), Imm8(4));
OR(32, R(scratch1), R(scratch2));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case FORMAT_24B_6666:
// RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap
LoadAndSwap(32, scratch1, data);
if (cpu_info.bBMI2)
{
MOV(32, R(scratch2), Imm32(0xFCFCFCFC));
PDEP(32, scratch1, scratch1, R(scratch2));
MOV(32, R(scratch2), R(scratch1));
}
//.........这里部分代码省略.........
示例11: JITDISABLE
void Jit64::cmpXX(UGeckoInstruction inst)
{
// USES_CR
INSTRUCTION_START
JITDISABLE(bJITIntegerOff);
int a = inst.RA;
int b = inst.RB;
int crf = inst.CRFD;
bool merge_branch = false;
int test_crf = js.next_inst.BI >> 2;
// Check if the next instruction is a branch - if it is, merge the two.
if (((js.next_inst.OPCD == 16 /* bcx */) ||
((js.next_inst.OPCD == 19) && (js.next_inst.SUBOP10 == 528) /* bcctrx */) ||
((js.next_inst.OPCD == 19) && (js.next_inst.SUBOP10 == 16) /* bclrx */)) &&
(js.next_inst.BO & BO_DONT_DECREMENT_FLAG) &&
!(js.next_inst.BO & BO_DONT_CHECK_CONDITION))
{
// Looks like a decent conditional branch that we can merge with.
// It only test CR, not CTR.
if (test_crf == crf)
{
merge_branch = true;
}
}
OpArg comparand;
bool signedCompare;
if (inst.OPCD == 31)
{
// cmp / cmpl
gpr.Lock(a, b);
comparand = gpr.R(b);
signedCompare = (inst.SUBOP10 == 0);
}
else
{
gpr.Lock(a);
if (inst.OPCD == 10)
{
//cmpli
comparand = Imm32((u32)inst.UIMM);
signedCompare = false;
}
else if (inst.OPCD == 11)
{
//cmpi
comparand = Imm32((u32)(s32)(s16)inst.UIMM);
signedCompare = true;
}
else
{
signedCompare = false; // silence compiler warning
PanicAlert("cmpXX");
}
}
if (gpr.R(a).IsImm() && comparand.IsImm())
{
// Both registers contain immediate values, so we can pre-compile the compare result
u8 compareResult;
if (signedCompare)
{
if ((s32)gpr.R(a).offset == (s32)comparand.offset)
compareResult = CR_EQ;
else if ((s32)gpr.R(a).offset > (s32)comparand.offset)
compareResult = CR_GT;
else
compareResult = CR_LT;
}
else
{
if ((u32)gpr.R(a).offset == (u32)comparand.offset)
compareResult = CR_EQ;
else if ((u32)gpr.R(a).offset > (u32)comparand.offset)
compareResult = CR_GT;
else
compareResult = CR_LT;
}
MOV(64, R(RAX), Imm64(PPCCRToInternal(compareResult)));
MOV(64, M(&PowerPC::ppcState.cr_val[crf]), R(RAX));
gpr.UnlockAll();
if (merge_branch)
{
js.downcountAmount++;
js.skipnext = true;
int test_bit = 8 >> (js.next_inst.BI & 3);
u8 conditionResult = (js.next_inst.BO & BO_BRANCH_IF_TRUE) ? test_bit : 0;
if ((compareResult & test_bit) == conditionResult)
{
gpr.Flush();
fpr.Flush();
if (js.next_inst.OPCD == 16) // bcx
{
if (js.next_inst.LK)
MOV(32, M(&LR), Imm32(js.compilerPC + 4));
//.........这里部分代码省略.........
示例12: putReg
void DSPJitRegCache::putReg(int reg, bool dirty)
{
int real_reg = reg;
if (regs[reg].parentReg != DSP_REG_NONE)
real_reg = regs[reg].parentReg;
OpArg oparg = regs[real_reg].loc;
switch (reg)
{
case DSP_REG_ACH0:
case DSP_REG_ACH1:
if (dirty)
{
// no need to extend to full 64bit here until interpreter
// uses that
if (oparg.IsSimpleReg())
{
// register is already shifted correctly
// (if at all)
// sign extend from the bottom 8 bits.
emitter.MOVSX(16, 8, oparg.GetSimpleReg(), oparg);
}
else if (oparg.IsImm())
{
// TODO: Immediates?
}
else
{
// this works on the memory, so use reg instead
// of real_reg, since it has the right loc
X64Reg tmp;
getFreeXReg(tmp);
// sign extend from the bottom 8 bits.
emitter.MOVSX(16, 8, tmp, regs[reg].loc);
emitter.MOV(16, regs[reg].loc, R(tmp));
putXReg(tmp);
}
}
break;
case DSP_REG_ACC0_64:
case DSP_REG_ACC1_64:
if (dirty)
{
emitter.SHL(64, oparg, Imm8(64-40)); // sign extend
emitter.SAR(64, oparg, Imm8(64-40));
}
break;
default:
break;
}
regs[real_reg].used = false;
if (regs[real_reg].loc.IsSimpleReg())
{
regs[real_reg].dirty |= dirty;
regs[real_reg].last_use_ctr = use_ctr;
use_ctr++;
}
}