本文整理汇总了C++中NodePtr::IsTheChild方法的典型用法代码示例。如果您正苦于以下问题:C++ NodePtr::IsTheChild方法的具体用法?C++ NodePtr::IsTheChild怎么用?C++ NodePtr::IsTheChild使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NodePtr
的用法示例。
在下文中一共展示了NodePtr::IsTheChild方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: fillInAncestors
//------------------------------------------------------------------------------
void Tree::fillInAncestors (NodePtr p)
{
NodePtr q = p->GetAnc ();
NodePtr r = p;
while (q != Root)
{
if (
(q->GetSibling () && !(r->IsTheChild ()))
|| (!(q->IsTheChild ()) && r->IsTheChild())
)
{
if (r ==p && q->GetHeight() == q->GetAnc()->GetHeight())
Line[q->GetAnc()->GetHeight()] = SIB;
else
Line[q->GetAnc()->GetHeight()] = VBAR;
}
r = q;
q = q->GetAnc ();
}
}
示例2: drawInteriorEdge
//------------------------------------------------------------------------------
void Tree::drawInteriorEdge (NodePtr p)
{
NodePtr r = p->GetAnc ();
int stop = r->GetHeight();
if (p->IsTheChild ())
{
// Visiting ancestor for the first time, so draw the
// end symbol
if (r == Root)
{
// if (IsRooted ())
Line[stop] = TEE; // «
// else
// Line[stop] = VBAR; // Ò
}
else
{
Line[stop] = TEE; // «
}
// Draw branch itself
if (r != Root)
{
// Line
int start = r->GetAnc()->GetHeight();
for (int i = start + 1; i < stop; i++)
{
Line[i] = HBAR; // €
}
// Start symbol
if (start == stop)
Line[start] = VBAR; // Ò
else if (r->IsTheChild ())
Line[start] = LEFT; // ò
else if (r->GetSibling ())
Line[start] = SIB; // Ì
else Line[start] = RIGHT; // Ë
//
fillInAncestors (r);
}
}
else
{
// Just draw nodes below
Line[stop] = VBAR;
fillInAncestors (p->GetSibling());
}
// Output the line
Line[stop + 1] = '\0';
drawLine (r, p->IsTheChild());
/*
*treeStream << Line.c_str();
// *treeStream << "h=" << r->GetHeight() << " w= "
// << r->GetWeight() << "-- ";
// Draw internal label, if present
string s = r->GetLabel();
if (s != "" && p->IsTheChild ())
*treeStream << r->GetLabel();
*treeStream << endl;
*/
// Clear the line for the next pass
for (int i = 0; i < (Leaves + 2); i++) // to do: get a better limit
Line[i] = ' ';
}
示例3: RemoveNode
NodePtr Tree::RemoveNode (NodePtr Node)
{
NodePtr result = NULL;
if (Node == Root)
{
if (Leaves == 1)
{
Root = NULL;
Node->SetAnc (NULL);
Leaves = Internals = 0;
}
return result;
}
NodePtr p;
NodePtr Ancestor = Node->GetAnc();
if (Ancestor->GetDegree() == 2)
{
// ancestor is binary, so remove node and its ancestor
if (Node->IsTheChild ())
p = Node->GetSibling();
else
p = Ancestor->GetChild();
NodePtr q = Ancestor->GetAnc();
p->SetAnc (q);
if (q != NULL)
{
if (Ancestor->IsTheChild())
q->SetChild (p);
else
{
NodePtr r = Ancestor->LeftSiblingOf ();
r->SetSibling (p);
}
p->SetSibling (Ancestor->GetSibling());
result = p;
}
else
{
// Ancestor is the root
Root = p;
p->SetSibling (NULL);
result = p;
}
delete Ancestor;
Internals--;
if (Node->IsLeaf())
Leaves--;
Node->SetAnc (NULL);
Node->SetSibling (NULL);
}
else
{
// polytomy, just remove node
NodePtr q;
if (Node->IsTheChild())
{
Ancestor->SetChild (Node->GetSibling());
q = Node->GetSibling ();
}
else
{
q = Node->LeftSiblingOf ();
q->SetSibling (Node->GetSibling ());
}
Node->SetSibling (NULL);
Node->SetAnc (NULL);
if (Node->IsLeaf())
Leaves--;
Ancestor->SetDegree (Ancestor->GetDegree() - 1);
result = q;
}
}