本文整理汇总了C++中NodePtr::GetAnc方法的典型用法代码示例。如果您正苦于以下问题:C++ NodePtr::GetAnc方法的具体用法?C++ NodePtr::GetAnc怎么用?C++ NodePtr::GetAnc使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NodePtr
的用法示例。
在下文中一共展示了NodePtr::GetAnc方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: buildtraverse
//------------------------------------------------------------------------------
// Fill in weight, degree, etc.
void Tree::buildtraverse (NodePtr p)
{
if (p)
{
p->SetWeight (0);
/*p->SetModelCategory(vector<double>(1,1.0)); //added by BCO
p->SetStateOrder(vector<int>(1,0)); //Added by BCO
p->SetStateTimes(vector<double>(1,0.0)); //Added by BCO*/
p->SetDegree (0);
buildtraverse (p->GetChild ());
buildtraverse (p->GetSibling ());
if (p->IsLeaf())
{
Leaves++;
p->SetWeight (1);
/*p->SetModelCategory(vector<double>(1,1.0)); //Added by BCO
p->SetStateOrder(vector<int>(1,0)); //Added by BCO
p->SetStateTimes(vector<double>(1,0.0)); //Added by BCO*/
}
else
{
Internals++;
}
if (p != Root)
{
p->GetAnc()->AddWeight (p->GetWeight());
p->GetAnc()->IncrementDegree();
}
}
}
示例2: traversenoquote
//Added by BCO
//------------------------------------------------------------------------------
void Tree::traversenoquote (NodePtr p)
{
if (p)
{
if (p->IsLeaf())
{
for (int i=0; i<(NEXUSString (p->GetLabel())).length(); i++) {
if ((NEXUSString (p->GetLabel()))[i]!= '\'') {
*treeStream <<(NEXUSString (p->GetLabel()))[i];
}
}
//*treeStream<<NEXUSString (p->GetLabel());
if (EdgeLengths)
{
*treeStream << ':' << p->GetEdgeLength ();
}
}
else
{
*treeStream << "(";
}
traversenoquote (p->GetChild());
if (p->GetSibling())
{
*treeStream << ",";
}
else
{
if (p != Root)
{
*treeStream << ")";
// 29/3/96
if ((p->GetAnc()->GetLabel() != "") && InternalLabels)
{
*treeStream << NEXUSString (p->GetAnc()->GetLabel ()) ; //here's the change from traverse
}
if (EdgeLengths && (p->GetAnc () != Root))
{
*treeStream << ':' << p->GetAnc()->GetEdgeLength ();
}
}
}
traversenoquote (p->GetSibling());
}
}
示例3: SortDescendants
//------------------------------------------------------------------------------
void TreeOrder::SortDescendants (NodePtr node)
{
NodePtr head = node->GetChild ();
NodePtr tail = head;
while (tail->GetSibling () != NULL)
{
NodePtr p = tail->GetSibling ();
if (MustSwap (head, p))
{
tail->SetSibling (p->GetSibling ());
p->SetSibling (head);
head = p;
p->GetAnc()->SetChild (p);
}
else
{
NodePtr q = head;
NodePtr r = q->GetSibling ();
while (MustSwap (p, r))
{
q = r;
r = q->GetSibling ();
}
if (p == r)
tail = p;
else
{
tail->SetSibling (p->GetSibling ());
p->SetSibling (r);
q->SetSibling (p);
}
}
}
}
示例4: AddNodeBelow
//------------------------------------------------------------------------------
// Add Node below Below. Doesn't update any clusters, weights, etc.
void Tree::AddNodeBelow (NodePtr Node, NodePtr Below)
{
NodePtr Ancestor = NewNode ();
Ancestor->SetChild (Node);
Node->SetAnc (Ancestor);
NodePtr q = Below->GetAnc ();
Internals++;
if (Node->IsLeaf())
Leaves++;
if (q == NULL || Below == q->GetChild())
{
Node->SetSibling (Below);
Ancestor->SetAnc (q);
Ancestor->SetSibling (Below->GetSibling());
Below->SetSibling (NULL);
Below->SetAnc (Ancestor);
if (q == NULL)
Root = Ancestor;
else
q->SetChild (Ancestor);
}
else
{
// Get left sibling of Below
NodePtr r = Below->LeftSiblingOf();
while (Below != r->GetSibling())
r = r->GetSibling();
Node->SetSibling (Below);
Ancestor->SetAnc (q);
Ancestor->SetSibling (Below->GetSibling());
Below->SetSibling (NULL);
Below->SetAnc (Ancestor);
r->SetSibling (Ancestor);
}
}
示例5: CalcCoordinates
//------------------------------------------------------------------------------
void RectangleTreeDrawer::CalcCoordinates ()
{
t->MakeNodeList();
maxDepth = 0;
// Clear internal node depths
for (int i = t->GetNumLeaves(); i < t->GetNumNodes(); i++)
{
(*t)[i]->SetDepth(0);
}
for (int i = 0; i < t->GetNumLeaves(); i++)
{
NodePtr p = (*t)[i]->GetAnc();
int count = 1;
while (p)
{
if (count > p->GetDepth())
{
p->SetDepth(count);
if (count > maxDepth)
maxDepth = count;
}
count++;
p = p->GetAnc();
}
}
double l = t->GetNumLeaves();
leafGap = height / (l - 1.0);
l = maxDepth + 1.0;
if (rooted)
nodeGap = width / l;
else
nodeGap = width / (l - 1.0);
leafCount = 0;
if (rooted)
{
// Allow for edge below root
left += nodeGap;
width -= nodeGap;
}
NodeIterator <Node> n (t->GetRoot());
Node *q = n.begin();
while (q)
{
if (q->IsLeaf ())
{
CalcLeaf (q);
}
else
{
CalcInternal (q);
}
q = n.next();
}
}
示例6: traverse
//------------------------------------------------------------------------------
void Tree::traverse (NodePtr p)
{
if (p)
{
if (p->IsLeaf())
{
*treeStream << NEXUSString (p->GetLabel());
if (EdgeLengths)
{
*treeStream << ':' << p->GetEdgeLength ();
}
}
else
{
*treeStream << "(";
}
traverse (p->GetChild());
if (p->GetSibling())
{
*treeStream << ",";
}
else
{
if (p != Root)
{
*treeStream << ")";
// 29/3/96
if ((p->GetAnc()->GetLabel() != "") && InternalLabels)
{
*treeStream << '\'' << NEXUSString (p->GetAnc()->GetLabel ()) << '\'';
}
if (EdgeLengths && (p->GetAnc () != Root))
{
*treeStream << ':' << p->GetAnc()->GetEdgeLength ();
}
}
}
traverse (p->GetSibling());
}
}
示例7: drawPendantEdge
//------------------------------------------------------------------------------
void Tree::drawPendantEdge (NodePtr p)
{
NodePtr q = p->GetAnc();
if (q == NULL)
{
// Handle the degenerate case of a tree with a single leaf
Line = (char) HBAR;
drawLine (p);
}
else
{
int start = q->GetHeight();
int stop = p->GetHeight();
char symbol;
// Draw line between p and its ancestor
int i;
for (i = start + 1; i <= stop; i++)
Line[i] = (char)HBAR; // €
// Find appropriate symbol for link to ancestor
if (p == q->GetChild())
{
symbol = (char)LEFT; // ò
}
else
{
// p is a sibling
if (p->GetSibling())
symbol = (char)SIB; // Ì
else symbol = (char)RIGHT; // Ë
}
Line[start] = symbol;
// Fill in ancestors
fillInAncestors (p);
// Terminate line
Line[stop + 1] = '\0';
drawLine (p);
/* // Output line and taxon name
*treeStream << Line.c_str() << " " << p->GetLabel ()
// << "h=" << p->GetHeight() << " w= "
// << p->GetWeight()
<<endl;
*/
// Clear the line for the next pass
for (i = 0; i < (Leaves + 2); i++) // to do: get a better limit for this
Line[i] = ' ';
}
}
示例8: fillInAncestors
//------------------------------------------------------------------------------
void Tree::fillInAncestors (NodePtr p)
{
NodePtr q = p->GetAnc ();
NodePtr r = p;
while (q != Root)
{
if (
(q->GetSibling () && !(r->IsTheChild ()))
|| (!(q->IsTheChild ()) && r->IsTheChild())
)
{
if (r ==p && q->GetHeight() == q->GetAnc()->GetHeight())
Line[q->GetAnc()->GetHeight()] = SIB;
else
Line[q->GetAnc()->GetHeight()] = VBAR;
}
r = q;
q = q->GetAnc ();
}
}
示例9: getPathLengths
//------------------------------------------------------------------------------
// Compute nodal heights based on path length from root, and store maximum
// value in plot.maxheight. Used by drawing routines.
void Tree::getPathLengths (NodePtr p)
{
if (p)
{
if (p != Root)
{
float l = p->GetEdgeLength();
if (l < 0.000001) // suppress negative branch lengths
l = 0.0;
p->SetPathLength (p->GetAnc()->GetPathLength() + l);
}
if (p->GetPathLength() > MaxPathLength)
MaxPathLength = p->GetPathLength();
getPathLengths (p->GetChild());
getPathLengths (p->GetSibling());
}
}
示例10: drawInteriorEdge
//------------------------------------------------------------------------------
void Tree::drawInteriorEdge (NodePtr p)
{
NodePtr r = p->GetAnc ();
int stop = r->GetHeight();
if (p->IsTheChild ())
{
// Visiting ancestor for the first time, so draw the
// end symbol
if (r == Root)
{
// if (IsRooted ())
Line[stop] = TEE; // «
// else
// Line[stop] = VBAR; // Ò
}
else
{
Line[stop] = TEE; // «
}
// Draw branch itself
if (r != Root)
{
// Line
int start = r->GetAnc()->GetHeight();
for (int i = start + 1; i < stop; i++)
{
Line[i] = HBAR; // €
}
// Start symbol
if (start == stop)
Line[start] = VBAR; // Ò
else if (r->IsTheChild ())
Line[start] = LEFT; // ò
else if (r->GetSibling ())
Line[start] = SIB; // Ì
else Line[start] = RIGHT; // Ë
//
fillInAncestors (r);
}
}
else
{
// Just draw nodes below
Line[stop] = VBAR;
fillInAncestors (p->GetSibling());
}
// Output the line
Line[stop + 1] = '\0';
drawLine (r, p->IsTheChild());
/*
*treeStream << Line.c_str();
// *treeStream << "h=" << r->GetHeight() << " w= "
// << r->GetWeight() << "-- ";
// Draw internal label, if present
string s = r->GetLabel();
if (s != "" && p->IsTheChild ())
*treeStream << r->GetLabel();
*treeStream << endl;
*/
// Clear the line for the next pass
for (int i = 0; i < (Leaves + 2); i++) // to do: get a better limit
Line[i] = ' ';
}
示例11: RemoveNode
NodePtr Tree::RemoveNode (NodePtr Node)
{
NodePtr result = NULL;
if (Node == Root)
{
if (Leaves == 1)
{
Root = NULL;
Node->SetAnc (NULL);
Leaves = Internals = 0;
}
return result;
}
NodePtr p;
NodePtr Ancestor = Node->GetAnc();
if (Ancestor->GetDegree() == 2)
{
// ancestor is binary, so remove node and its ancestor
if (Node->IsTheChild ())
p = Node->GetSibling();
else
p = Ancestor->GetChild();
NodePtr q = Ancestor->GetAnc();
p->SetAnc (q);
if (q != NULL)
{
if (Ancestor->IsTheChild())
q->SetChild (p);
else
{
NodePtr r = Ancestor->LeftSiblingOf ();
r->SetSibling (p);
}
p->SetSibling (Ancestor->GetSibling());
result = p;
}
else
{
// Ancestor is the root
Root = p;
p->SetSibling (NULL);
result = p;
}
delete Ancestor;
Internals--;
if (Node->IsLeaf())
Leaves--;
Node->SetAnc (NULL);
Node->SetSibling (NULL);
}
else
{
// polytomy, just remove node
NodePtr q;
if (Node->IsTheChild())
{
Ancestor->SetChild (Node->GetSibling());
q = Node->GetSibling ();
}
else
{
q = Node->LeftSiblingOf ();
q->SetSibling (Node->GetSibling ());
}
Node->SetSibling (NULL);
Node->SetAnc (NULL);
if (Node->IsLeaf())
Leaves--;
Ancestor->SetDegree (Ancestor->GetDegree() - 1);
result = q;
}
}