本文整理汇总了C++中NodeOperation::isViewerOperation方法的典型用法代码示例。如果您正苦于以下问题:C++ NodeOperation::isViewerOperation方法的具体用法?C++ NodeOperation::isViewerOperation怎么用?C++ NodeOperation::isViewerOperation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NodeOperation
的用法示例。
在下文中一共展示了NodeOperation::isViewerOperation方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setRenderBorder
void ExecutionGroup::setRenderBorder(float xmin, float xmax, float ymin, float ymax)
{
NodeOperation *operation = this->getOutputOperation();
if (operation->isOutputOperation(true)) {
/* Basically, setting border need to happen for only operations
* which operates in render resolution buffers (like compositor
* output nodes).
*
* In this cases adding border will lead to mapping coordinates
* from output buffer space to input buffer spaces when executing
* operation.
*
* But nodes like viewer and file output just shall display or
* safe the same exact buffer which goes to their input, no need
* in any kind of coordinates mapping.
*/
bool operationNeedsBorder = !(operation->isViewerOperation() ||
operation->isPreviewOperation() ||
operation->isFileOutputOperation());
if (operationNeedsBorder) {
BLI_rcti_init(&this->m_viewerBorder, xmin * this->m_width, xmax * this->m_width,
ymin * this->m_height, ymax * this->m_height);
}
}
}
示例2: setViewerBorder
void ExecutionGroup::setViewerBorder(float xmin, float xmax, float ymin, float ymax)
{
NodeOperation *operation = this->getOutputOperation();
if (operation->isViewerOperation() || operation->isPreviewOperation()) {
BLI_rcti_init(&this->m_viewerBorder, xmin * this->m_width, xmax * this->m_width,
ymin * this->m_height, ymax * this->m_height);
}
}
示例3: execute
/**
* this method is called for the top execution groups. containing the compositor node or the preview node or the viewer node)
*/
void ExecutionGroup::execute(ExecutionSystem *graph)
{
const CompositorContext &context = graph->getContext();
const bNodeTree *bTree = context.getbNodeTree();
if (this->m_width == 0 || this->m_height == 0) {return; } /// @note: break out... no pixels to calculate.
if (bTree->test_break && bTree->test_break(bTree->tbh)) {return; } /// @note: early break out for blur and preview nodes
if (this->m_numberOfChunks == 0) {return; } /// @note: early break out
unsigned int chunkNumber;
this->m_executionStartTime = PIL_check_seconds_timer();
this->m_chunksFinished = 0;
this->m_bTree = bTree;
unsigned int index;
unsigned int *chunkOrder = (unsigned int *)MEM_mallocN(sizeof(unsigned int) * this->m_numberOfChunks, __func__);
for (chunkNumber = 0; chunkNumber < this->m_numberOfChunks; chunkNumber++) {
chunkOrder[chunkNumber] = chunkNumber;
}
NodeOperation *operation = this->getOutputOperation();
float centerX = 0.5;
float centerY = 0.5;
OrderOfChunks chunkorder = COM_ORDER_OF_CHUNKS_DEFAULT;
if (operation->isViewerOperation()) {
ViewerOperation *viewer = (ViewerOperation *)operation;
centerX = viewer->getCenterX();
centerY = viewer->getCenterY();
chunkorder = viewer->getChunkOrder();
}
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
switch (chunkorder) {
case COM_TO_RANDOM:
for (index = 0; index < 2 * this->m_numberOfChunks; index++) {
int index1 = rand() % this->m_numberOfChunks;
int index2 = rand() % this->m_numberOfChunks;
int s = chunkOrder[index1];
chunkOrder[index1] = chunkOrder[index2];
chunkOrder[index2] = s;
}
break;
case COM_TO_CENTER_OUT:
{
ChunkOrderHotspot *hotspots[1];
hotspots[0] = new ChunkOrderHotspot(border_width * centerX, border_height * centerY, 0.0f);
rcti rect;
ChunkOrder *chunkOrders = (ChunkOrder *)MEM_mallocN(sizeof(ChunkOrder) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
determineChunkRect(&rect, index);
chunkOrders[index].setChunkNumber(index);
chunkOrders[index].setX(rect.xmin - this->m_viewerBorder.xmin);
chunkOrders[index].setY(rect.ymin - this->m_viewerBorder.ymin);
chunkOrders[index].determineDistance(hotspots, 1);
}
std::sort(&chunkOrders[0], &chunkOrders[this->m_numberOfChunks - 1]);
for (index = 0; index < this->m_numberOfChunks; index++) {
chunkOrder[index] = chunkOrders[index].getChunkNumber();
}
delete hotspots[0];
MEM_freeN(chunkOrders);
break;
}
case COM_TO_RULE_OF_THIRDS:
{
ChunkOrderHotspot *hotspots[9];
unsigned int tx = border_width / 6;
unsigned int ty = border_height / 6;
unsigned int mx = border_width / 2;
unsigned int my = border_height / 2;
unsigned int bx = mx + 2 * tx;
unsigned int by = my + 2 * ty;
float addition = this->m_numberOfChunks / COM_RULE_OF_THIRDS_DIVIDER;
hotspots[0] = new ChunkOrderHotspot(mx, my, addition * 0);
hotspots[1] = new ChunkOrderHotspot(tx, my, addition * 1);
hotspots[2] = new ChunkOrderHotspot(bx, my, addition * 2);
hotspots[3] = new ChunkOrderHotspot(bx, by, addition * 3);
hotspots[4] = new ChunkOrderHotspot(tx, ty, addition * 4);
hotspots[5] = new ChunkOrderHotspot(bx, ty, addition * 5);
hotspots[6] = new ChunkOrderHotspot(tx, by, addition * 6);
hotspots[7] = new ChunkOrderHotspot(mx, ty, addition * 7);
hotspots[8] = new ChunkOrderHotspot(mx, by, addition * 8);
rcti rect;
ChunkOrder *chunkOrders = (ChunkOrder *)MEM_mallocN(sizeof(ChunkOrder) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
determineChunkRect(&rect, index);
chunkOrders[index].setChunkNumber(index);
chunkOrders[index].setX(rect.xmin - this->m_viewerBorder.xmin);
chunkOrders[index].setY(rect.ymin - this->m_viewerBorder.ymin);
chunkOrders[index].determineDistance(hotspots, 9);
}
//.........这里部分代码省略.........