本文整理汇总了C++中NetParameter::layers方法的典型用法代码示例。如果您正苦于以下问题:C++ NetParameter::layers方法的具体用法?C++ NetParameter::layers怎么用?C++ NetParameter::layers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NetParameter
的用法示例。
在下文中一共展示了NetParameter::layers方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: UpgradeV0PaddingLayers
void UpgradeV0PaddingLayers(const NetParameter& param,
NetParameter* param_upgraded_pad) {
// Copy everything other than the layers from the original param.
param_upgraded_pad->Clear();
param_upgraded_pad->CopyFrom(param);
param_upgraded_pad->clear_layers();
// Figure out which layer each bottom blob comes from.
map<string, int> blob_name_to_last_top_idx;
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
blob_name_to_last_top_idx[blob_name] = -1;
}
for (int i = 0; i < param.layers_size(); ++i) {
const V1LayerParameter& layer_connection = param.layers(i);
const V0LayerParameter& layer_param = layer_connection.layer();
// Add the layer to the new net, unless it's a padding layer.
if (layer_param.type() != "padding") {
param_upgraded_pad->add_layers()->CopyFrom(layer_connection);
}
for (int j = 0; j < layer_connection.bottom_size(); ++j) {
const string& blob_name = layer_connection.bottom(j);
if (blob_name_to_last_top_idx.find(blob_name) ==
blob_name_to_last_top_idx.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name << " to layer " << j;
}
const int top_idx = blob_name_to_last_top_idx[blob_name];
if (top_idx == -1) {
continue;
}
const V1LayerParameter& source_layer = param.layers(top_idx);
if (source_layer.layer().type() == "padding") {
// This layer has a padding layer as input -- check that it is a conv
// layer or a pooling layer and takes only one input. Also check that
// the padding layer input has only one input and one output. Other
// cases have undefined behavior in Caffe.
CHECK((layer_param.type() == "conv") || (layer_param.type() == "pool"))
<< "Padding layer input to "
"non-convolutional / non-pooling layer type "
<< layer_param.type();
CHECK_EQ(layer_connection.bottom_size(), 1)
<< "Conv Layer takes a single blob as input.";
CHECK_EQ(source_layer.bottom_size(), 1)
<< "Padding Layer takes a single blob as input.";
CHECK_EQ(source_layer.top_size(), 1)
<< "Padding Layer produces a single blob as output.";
int layer_index = param_upgraded_pad->layers_size() - 1;
param_upgraded_pad->mutable_layers(layer_index)->mutable_layer()
->set_pad(source_layer.layer().pad());
param_upgraded_pad->mutable_layers(layer_index)
->set_bottom(j, source_layer.bottom(0));
}
}
for (int j = 0; j < layer_connection.top_size(); ++j) {
const string& blob_name = layer_connection.top(j);
blob_name_to_last_top_idx[blob_name] = i;
}
}
}
示例2: NetNeedsDataUpgrade
bool NetNeedsDataUpgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layers_size(); ++i) {
if (net_param.layers(i).type() == LayerParameter_LayerType_DATA) {
DataParameter layer_param = net_param.layers(i).data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == LayerParameter_LayerType_IMAGE_DATA) {
ImageDataParameter layer_param = net_param.layers(i).image_data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == LayerParameter_LayerType_WINDOW_DATA) {
WindowDataParameter layer_param = net_param.layers(i).window_data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == LayerParameter_LayerType_QDATA) {
QDataParameter layer_param = net_param.layers(i).qdata_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
}
return false;
}
示例3:
void Net<Dtype>::CopyTrainedLayersFrom(const NetParameter& param) {
int num_source_layers = param.layers_size();
for (int i = 0; i < num_source_layers; ++i) {
const LayerParameter& source_layer = param.layers(i);
const string& source_layer_name = source_layer.name();
int target_layer_id = 0;
while (target_layer_id != layer_names_.size() &&
layer_names_[target_layer_id] != source_layer_name) {
++target_layer_id;
}
if (target_layer_id == layer_names_.size()) {
DLOG(INFO) << "Ignoring source layer " << source_layer_name;
continue;
}
DLOG(INFO) << "Copying source layer " << source_layer_name;
vector<shared_ptr<Blob<Dtype> > >& target_blobs =
layers_[target_layer_id]->blobs();
// blob 0# weights, 1# bias term
CHECK_EQ(target_blobs.size(), source_layer.blobs_size())
<< "Incompatible number of blobs for layer " << source_layer_name;
for (int j = 0; j < target_blobs.size(); ++j) {
CHECK_EQ(target_blobs[j]->num(), source_layer.blobs(j).num());
CHECK_EQ(target_blobs[j]->channels(), source_layer.blobs(j).channels());
CHECK_EQ(target_blobs[j]->height(), source_layer.blobs(j).height());
CHECK_EQ(target_blobs[j]->width(), source_layer.blobs(j).width());
target_blobs[j]->FromProto(source_layer.blobs(j));
}
}
}
示例4: NetNeedsV0ToV1Upgrade
bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layers_size(); ++i) {
if (net_param.layers(i).has_layer()) {
return true;
}
}
return false;
}
示例5: UpgradeV1Net
bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param) {
bool is_fully_compatible = true;
if (v1_net_param.layer_size() > 0) {
LOG(ERROR) << "Input NetParameter to be upgraded already specifies 'layer' "
<< "fields; these will be ignored for the upgrade.";
is_fully_compatible = false;
}
net_param->CopyFrom(v1_net_param);
net_param->clear_layers();
net_param->clear_layer();
for (int i = 0; i < v1_net_param.layers_size(); ++i) {
if (!UpgradeV1LayerParameter(v1_net_param.layers(i),
net_param->add_layer())) {
LOG(ERROR) << "Upgrade of input layer " << i << " failed.";
is_fully_compatible = false;
}
}
return is_fully_compatible;
}
示例6: NetParameterToPrettyPrint
void NetParameterToPrettyPrint(const NetParameter& param,
NetParameterPrettyPrint* pretty_param) {
pretty_param->Clear();
if (param.has_name()) {
pretty_param->set_name(param.name());
}
if (param.has_force_backward()) {
pretty_param->set_force_backward(param.force_backward());
}
for (int i = 0; i < param.input_size(); ++i) {
pretty_param->add_input(param.input(i));
}
for (int i = 0; i < param.input_dim_size(); ++i) {
pretty_param->add_input_dim(param.input_dim(i));
}
for (int i = 0; i < param.layers_size(); ++i) {
pretty_param->add_layers()->CopyFrom(param.layers(i));
}
}
示例7: UpgradeV1Net
bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param) {
if (v1_net_param.layer_size() > 0) {
LOG(FATAL) << "Refusing to upgrade inconsistent NetParameter input; "
<< "the definition includes both 'layer' and 'layers' fields. "
<< "The current format defines 'layer' fields with string type like "
<< "layer { type: 'Layer' ... } and not layers { type: LAYER ... }. "
<< "Manually switch the definition to 'layer' format to continue.";
}
bool is_fully_compatible = true;
net_param->CopyFrom(v1_net_param);
net_param->clear_layers();
net_param->clear_layer();
for (int i = 0; i < v1_net_param.layers_size(); ++i) {
if (!UpgradeV1LayerParameter(v1_net_param.layers(i),
net_param->add_layer())) {
LOG(ERROR) << "Upgrade of input layer " << i << " failed.";
is_fully_compatible = false;
}
}
return is_fully_compatible;
}
示例8: InsertSplits
void InsertSplits(const NetParameter& param, NetParameter* param_split) {
// Initialize by copying from the input NetParameter.
param_split->CopyFrom(param);
param_split->clear_layers();
map<string, pair<int, int> > blob_name_to_last_top_idx;
map<pair<int, int>, pair<int, int> > bottom_idx_to_source_top_idx;
map<pair<int, int>, int> top_idx_to_bottom_count;
map<pair<int, int>, int> top_idx_to_bottom_split_idx;
map<int, string> layer_idx_to_layer_name;
layer_idx_to_layer_name[-1] = "input";
// Determine the number of times each blob is used as an input (bottom) blob.
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
blob_name_to_last_top_idx[blob_name] = make_pair(-1, i);
}
for (int i = 0; i < param.layers_size(); ++i) {
const LayerParameter& layer_param = param.layers(i);
layer_idx_to_layer_name[i] = layer_param.name();
for (int j = 0; j < layer_param.bottom_size(); ++j) {
const string& blob_name = layer_param.bottom(j);
if (blob_name_to_last_top_idx.find(blob_name) ==
blob_name_to_last_top_idx.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name << " to layer " << j;
}
const pair<int, int>& bottom_idx = make_pair(i, j);
const pair<int, int>& top_idx = blob_name_to_last_top_idx[blob_name];
bottom_idx_to_source_top_idx[bottom_idx] = top_idx;
++top_idx_to_bottom_count[top_idx];
}
for (int j = 0; j < layer_param.top_size(); ++j) {
const string& blob_name = layer_param.top(j);
blob_name_to_last_top_idx[blob_name] = make_pair(i, j);
}
}
// Create split layer for any input blobs used by other layers as bottom
// blobs more than once.
for (int i = 0; i < param.input_size(); ++i) {
const int split_count = top_idx_to_bottom_count[make_pair(-1, i)];
if (split_count > 1) {
const string& layer_name = layer_idx_to_layer_name[-1];
const string& blob_name = param.input(i);
LayerParameter* split_layer_param = param_split->add_layers();
ConfigureSplitLayer(layer_name, blob_name, i, split_count,
split_layer_param);
}
}
for (int i = 0; i < param.layers_size(); ++i) {
LayerParameter* layer_param = param_split->add_layers();
layer_param->CopyFrom(param.layers(i));
// Replace any shared bottom blobs with split layer outputs.
for (int j = 0; j < layer_param->bottom_size(); ++j) {
const pair<int, int>& top_idx =
bottom_idx_to_source_top_idx[make_pair(i, j)];
const int split_count = top_idx_to_bottom_count[top_idx];
if (split_count > 1) {
const string& layer_name = layer_idx_to_layer_name[top_idx.first];
const string& blob_name = layer_param->bottom(j);
layer_param->set_bottom(j, SplitBlobName(layer_name,
blob_name, top_idx.second, top_idx_to_bottom_split_idx[top_idx]++));
}
}
// Create split layer for any top blobs used by other layers as bottom
// blobs more than once.
for (int j = 0; j < layer_param->top_size(); ++j) {
const int split_count = top_idx_to_bottom_count[make_pair(i, j)];
if (split_count > 1) {
const string& layer_name = layer_idx_to_layer_name[i];
const string& blob_name = layer_param->top(j);
LayerParameter* split_layer_param = param_split->add_layers();
ConfigureSplitLayer(layer_name, blob_name, j, split_count,
split_layer_param);
}
}
}
}
示例9: if
void Net<Dtype>::Init(const NetParameter& in_param) {
// Create a copy of in_param with splits added where necessary.
NetParameter param;
InsertSplits(in_param, ¶m);
// Basically, build all the layers and set up its connections.
name_ = param.name();
map<string, int> blob_name_to_idx;
set<string> available_blobs;
int num_layers = param.layers_size();
CHECK_EQ(param.input_size() * 4, param.input_dim_size())
<< "Incorrect bottom blob dimension specifications.";
size_t memory_used = 0;
// set the input blobs
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
shared_ptr<Blob<Dtype> > blob_pointer(
new Blob<Dtype>(param.input_dim(i * 4),
param.input_dim(i * 4 + 1),
param.input_dim(i * 4 + 2),
param.input_dim(i * 4 + 3)));
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
net_input_blob_indices_.push_back(i);
net_input_blobs_.push_back(blob_pointer.get());
blob_name_to_idx[blob_name] = i;
available_blobs.insert(blob_name);
memory_used += blob_pointer->count();
}
DLOG(INFO) << "Memory required for Data" << memory_used*sizeof(Dtype);
// For each layer, set up their input and output
bottom_vecs_.resize(param.layers_size());
top_vecs_.resize(param.layers_size());
bottom_id_vecs_.resize(param.layers_size());
top_id_vecs_.resize(param.layers_size());
for (int i = 0; i < param.layers_size(); ++i) {
bool in_place = false;
const LayerParameter& layer_param = param.layers(i);
layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param)));
layer_names_.push_back(layer_param.name());
LOG(INFO) << "Creating Layer " << layer_param.name();
bool need_backward = param.force_backward();
// Figure out this layer's input
for (int j = 0; j < layer_param.bottom_size(); ++j) {
const string& blob_name = layer_param.bottom(j);
const int blob_id = blob_name_to_idx[blob_name];
if (available_blobs.find(blob_name) == available_blobs.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name <<
" to layer" << j;
}
LOG(INFO) << layer_param.name() << " <- " << blob_name;
bottom_vecs_[i].push_back(blobs_[blob_id].get());
bottom_id_vecs_[i].push_back(blob_id);
// If a blob needs backward, this layer should provide it.
need_backward |= blob_need_backward_[blob_id];
available_blobs.erase(blob_name);
}
// Figure out this layer's output
for (int j = 0; j < layer_param.top_size(); ++j) {
const string& blob_name = layer_param.top(j);
// Check if we are doing in-place computation
if (layer_param.bottom_size() > j &&
blob_name == layer_param.bottom(j)) {
// In-place computation
LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)";
in_place = true;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(
blobs_[blob_name_to_idx[blob_name]].get());
top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]);
} else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) {
// If we are not doing in-place computation but has duplicated blobs,
// raise an error.
LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
} else {
// Normal output.
LOG(INFO) << layer_param.name() << " -> " << blob_name;
shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
blob_name_to_idx[blob_name] = blob_names_.size() - 1;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get());
top_id_vecs_[i].push_back(blob_names_.size() - 1);
}
}
// After this layer is connected, set it up.
//LOG(INFO) << "Setting up " << layer_names_[i];
layers_[i]->SetUp(bottom_vecs_[i], &(top_vecs_[i]));
//.........这里部分代码省略.........
示例10: LOG
void Net<Dtype>::Init(const NetParameter& param) {
// Basically, build all the layers and set up its connections.
name_ = param.name();
map<string, int> blob_name_to_idx;
set<string> available_blobs;
int num_layers = param.layers_size();
CHECK_EQ(param.input_size() * 4, param.input_dim_size())
<< "Incorrect bottom blob dimension specifications.";
// set the input blobs
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
shared_ptr<Blob<Dtype> > blob_pointer(
new Blob<Dtype>(param.input_dim(i * 4),
param.input_dim(i * 4 + 1),
param.input_dim(i * 4 + 2),
param.input_dim(i * 4 + 3)));
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
net_input_blob_indices_.push_back(i);
net_input_blobs_.push_back(blob_pointer.get());
blob_name_to_idx[blob_name] = i;
available_blobs.insert(blob_name);
}
// For each layer, set up their input and output
bottom_vecs_.resize(param.layers_size());
top_vecs_.resize(param.layers_size());
bottom_id_vecs_.resize(param.layers_size());
top_id_vecs_.resize(param.layers_size());
for (int i = 0; i < param.layers_size(); ++i) {
const LayerConnection& layer_connection = param.layers(i);
const LayerParameter& layer_param = layer_connection.layer();
layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param)));
layer_names_.push_back(layer_param.name());
LOG(INFO) << "Creating Layer " << layer_param.name();
bool need_backward = param.force_backward();
// Figure out this layer's input and output
for (int j = 0; j < layer_connection.bottom_size(); ++j) {
const string& blob_name = layer_connection.bottom(j);
const int blob_id = blob_name_to_idx[blob_name];
if (available_blobs.find(blob_name) == available_blobs.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name <<
" to layer" << j;
}
LOG(INFO) << layer_param.name() << " <- " << blob_name;
bottom_vecs_[i].push_back(
blobs_[blob_id].get());
bottom_id_vecs_[i].push_back(blob_id);
// If a blob needs backward, this layer should provide it.
need_backward |= blob_need_backward_[blob_id];
available_blobs.erase(blob_name);
}
for (int j = 0; j < layer_connection.top_size(); ++j) {
const string& blob_name = layer_connection.top(j);
// Check if we are doing in-place computation
if (layer_connection.bottom_size() > j &&
blob_name == layer_connection.bottom(j)) {
// In-place computation
LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)";
available_blobs.insert(blob_name);
top_vecs_[i].push_back(
blobs_[blob_name_to_idx[blob_name]].get());
top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]);
} else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) {
// If we are not doing in-place computation but has duplicated blobs,
// raise an error.
LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
} else {
// Normal output.
LOG(INFO) << layer_param.name() << " -> " << blob_name;
shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
blob_name_to_idx[blob_name] = blob_names_.size() - 1;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get());
top_id_vecs_[i].push_back(blob_names_.size() - 1);
}
}
// After this layer is connected, set it up.
// LOG(INFO) << "Setting up " << layer_names_[i];
layers_[i]->SetUp(bottom_vecs_[i], &top_vecs_[i]);
for (int topid = 0; topid < top_vecs_[i].size(); ++topid) {
LOG(INFO) << "Top shape: " << top_vecs_[i][topid]->channels() << " "
<< top_vecs_[i][topid]->height() << " "
<< top_vecs_[i][topid]->width();
}
// Check if this layer needs backward operation itself
for (int j = 0; j < layers_[i]->layer_param().blobs_lr_size(); ++j) {
need_backward |= (layers_[i]->layer_param().blobs_lr(j) > 0);
}
// Finally, set the backward flag
layer_need_backward_.push_back(need_backward);
if (need_backward) {
LOG(INFO) << layer_names_[i] << " needs backward computation.";
for (int j = 0; j < top_id_vecs_[i].size(); ++j) {
blob_need_backward_[top_id_vecs_[i][j]] = true;
}
} else {
//.........这里部分代码省略.........