本文整理汇总了C++中NetParameter::input_dim_size方法的典型用法代码示例。如果您正苦于以下问题:C++ NetParameter::input_dim_size方法的具体用法?C++ NetParameter::input_dim_size怎么用?C++ NetParameter::input_dim_size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NetParameter
的用法示例。
在下文中一共展示了NetParameter::input_dim_size方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: NetParameterToPrettyPrint
void NetParameterToPrettyPrint(const NetParameter& param,
NetParameterPrettyPrint* pretty_param) {
pretty_param->Clear();
if (param.has_name()) {
pretty_param->set_name(param.name());
}
if (param.has_force_backward()) {
pretty_param->set_force_backward(param.force_backward());
}
for (int i = 0; i < param.input_size(); ++i) {
pretty_param->add_input(param.input(i));
}
for (int i = 0; i < param.input_dim_size(); ++i) {
pretty_param->add_input_dim(param.input_dim(i));
}
for (int i = 0; i < param.layers_size(); ++i) {
pretty_param->add_layers()->CopyFrom(param.layers(i));
}
}
示例2: if
void Net<Dtype>::Init(const NetParameter& in_param) {
// Create a copy of in_param with splits added where necessary.
NetParameter param;
InsertSplits(in_param, ¶m);
// Basically, build all the layers and set up its connections.
name_ = param.name();
map<string, int> blob_name_to_idx;
set<string> available_blobs;
int num_layers = param.layers_size();
CHECK_EQ(param.input_size() * 4, param.input_dim_size())
<< "Incorrect bottom blob dimension specifications.";
size_t memory_used = 0;
// set the input blobs
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
shared_ptr<Blob<Dtype> > blob_pointer(
new Blob<Dtype>(param.input_dim(i * 4),
param.input_dim(i * 4 + 1),
param.input_dim(i * 4 + 2),
param.input_dim(i * 4 + 3)));
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
net_input_blob_indices_.push_back(i);
net_input_blobs_.push_back(blob_pointer.get());
blob_name_to_idx[blob_name] = i;
available_blobs.insert(blob_name);
memory_used += blob_pointer->count();
}
DLOG(INFO) << "Memory required for Data" << memory_used*sizeof(Dtype);
// For each layer, set up their input and output
bottom_vecs_.resize(param.layers_size());
top_vecs_.resize(param.layers_size());
bottom_id_vecs_.resize(param.layers_size());
top_id_vecs_.resize(param.layers_size());
for (int i = 0; i < param.layers_size(); ++i) {
bool in_place = false;
const LayerParameter& layer_param = param.layers(i);
layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param)));
layer_names_.push_back(layer_param.name());
LOG(INFO) << "Creating Layer " << layer_param.name();
bool need_backward = param.force_backward();
// Figure out this layer's input
for (int j = 0; j < layer_param.bottom_size(); ++j) {
const string& blob_name = layer_param.bottom(j);
const int blob_id = blob_name_to_idx[blob_name];
if (available_blobs.find(blob_name) == available_blobs.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name <<
" to layer" << j;
}
LOG(INFO) << layer_param.name() << " <- " << blob_name;
bottom_vecs_[i].push_back(blobs_[blob_id].get());
bottom_id_vecs_[i].push_back(blob_id);
// If a blob needs backward, this layer should provide it.
need_backward |= blob_need_backward_[blob_id];
available_blobs.erase(blob_name);
}
// Figure out this layer's output
for (int j = 0; j < layer_param.top_size(); ++j) {
const string& blob_name = layer_param.top(j);
// Check if we are doing in-place computation
if (layer_param.bottom_size() > j &&
blob_name == layer_param.bottom(j)) {
// In-place computation
LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)";
in_place = true;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(
blobs_[blob_name_to_idx[blob_name]].get());
top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]);
} else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) {
// If we are not doing in-place computation but has duplicated blobs,
// raise an error.
LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
} else {
// Normal output.
LOG(INFO) << layer_param.name() << " -> " << blob_name;
shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
blob_name_to_idx[blob_name] = blob_names_.size() - 1;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get());
top_id_vecs_[i].push_back(blob_names_.size() - 1);
}
}
// After this layer is connected, set it up.
//LOG(INFO) << "Setting up " << layer_names_[i];
layers_[i]->SetUp(bottom_vecs_[i], &(top_vecs_[i]));
//.........这里部分代码省略.........
示例3: LOG
void Net<Dtype>::Init(const NetParameter& param) {
// Basically, build all the layers and set up its connections.
name_ = param.name();
map<string, int> blob_name_to_idx;
set<string> available_blobs;
int num_layers = param.layers_size();
CHECK_EQ(param.input_size() * 4, param.input_dim_size())
<< "Incorrect bottom blob dimension specifications.";
// set the input blobs
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
shared_ptr<Blob<Dtype> > blob_pointer(
new Blob<Dtype>(param.input_dim(i * 4),
param.input_dim(i * 4 + 1),
param.input_dim(i * 4 + 2),
param.input_dim(i * 4 + 3)));
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
net_input_blob_indices_.push_back(i);
net_input_blobs_.push_back(blob_pointer.get());
blob_name_to_idx[blob_name] = i;
available_blobs.insert(blob_name);
}
// For each layer, set up their input and output
bottom_vecs_.resize(param.layers_size());
top_vecs_.resize(param.layers_size());
bottom_id_vecs_.resize(param.layers_size());
top_id_vecs_.resize(param.layers_size());
for (int i = 0; i < param.layers_size(); ++i) {
const LayerConnection& layer_connection = param.layers(i);
const LayerParameter& layer_param = layer_connection.layer();
layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param)));
layer_names_.push_back(layer_param.name());
LOG(INFO) << "Creating Layer " << layer_param.name();
bool need_backward = param.force_backward();
// Figure out this layer's input and output
for (int j = 0; j < layer_connection.bottom_size(); ++j) {
const string& blob_name = layer_connection.bottom(j);
const int blob_id = blob_name_to_idx[blob_name];
if (available_blobs.find(blob_name) == available_blobs.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name <<
" to layer" << j;
}
LOG(INFO) << layer_param.name() << " <- " << blob_name;
bottom_vecs_[i].push_back(
blobs_[blob_id].get());
bottom_id_vecs_[i].push_back(blob_id);
// If a blob needs backward, this layer should provide it.
need_backward |= blob_need_backward_[blob_id];
available_blobs.erase(blob_name);
}
for (int j = 0; j < layer_connection.top_size(); ++j) {
const string& blob_name = layer_connection.top(j);
// Check if we are doing in-place computation
if (layer_connection.bottom_size() > j &&
blob_name == layer_connection.bottom(j)) {
// In-place computation
LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)";
available_blobs.insert(blob_name);
top_vecs_[i].push_back(
blobs_[blob_name_to_idx[blob_name]].get());
top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]);
} else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) {
// If we are not doing in-place computation but has duplicated blobs,
// raise an error.
LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
} else {
// Normal output.
LOG(INFO) << layer_param.name() << " -> " << blob_name;
shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
blob_name_to_idx[blob_name] = blob_names_.size() - 1;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get());
top_id_vecs_[i].push_back(blob_names_.size() - 1);
}
}
// After this layer is connected, set it up.
// LOG(INFO) << "Setting up " << layer_names_[i];
layers_[i]->SetUp(bottom_vecs_[i], &top_vecs_[i]);
for (int topid = 0; topid < top_vecs_[i].size(); ++topid) {
LOG(INFO) << "Top shape: " << top_vecs_[i][topid]->channels() << " "
<< top_vecs_[i][topid]->height() << " "
<< top_vecs_[i][topid]->width();
}
// Check if this layer needs backward operation itself
for (int j = 0; j < layers_[i]->layer_param().blobs_lr_size(); ++j) {
need_backward |= (layers_[i]->layer_param().blobs_lr(j) > 0);
}
// Finally, set the backward flag
layer_need_backward_.push_back(need_backward);
if (need_backward) {
LOG(INFO) << layer_names_[i] << " needs backward computation.";
for (int j = 0; j < top_id_vecs_[i].size(); ++j) {
blob_need_backward_[top_id_vecs_[i][j]] = true;
}
} else {
//.........这里部分代码省略.........