当前位置: 首页>>代码示例>>C++>>正文


C++ Metric::name方法代码示例

本文整理汇总了C++中Metric::name方法的典型用法代码示例。如果您正苦于以下问题:C++ Metric::name方法的具体用法?C++ Metric::name怎么用?C++ Metric::name使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Metric的用法示例。


在下文中一共展示了Metric::name方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: dispatch

inline Future<Nothing> remove(const Metric& metric)
{
  // The metrics process is instantiated in `process::initialize`.
  process::initialize();

  return dispatch(
      internal::metrics,
      &internal::MetricsProcess::remove,
      metric.name());
}
开发者ID:ChrisPaprocki,项目名称:mesos,代码行数:10,代码来源:metrics.hpp

示例2: thundersvm_predict_sub

    void thundersvm_predict_sub(DataSet& predict_dataset, CMDParser& parser, char* model_file_path, char* output_file_path){
        fstream file;
        file.open(model_file_path, std::fstream::in);
        string feature, svm_type;
        file >> feature >> svm_type;
        CHECK_EQ(feature, "svm_type");
        SvmModel *model = nullptr;
        Metric *metric = nullptr;
        if (svm_type == "c_svc") {
            model = new SVC();
            metric = new Accuracy();
        } else if (svm_type == "nu_svc") {
            model = new NuSVC();
            metric = new Accuracy();
        } else if (svm_type == "one_class") {
            model = new OneClassSVC();
            //todo determine a metric
        } else if (svm_type == "epsilon_svr") {
            model = new SVR();
            metric = new MSE();
        } else if (svm_type == "nu_svr") {
            model = new NuSVR();
            metric = new MSE();
        }

#ifdef USE_CUDA
        CUDA_CHECK(cudaSetDevice(parser.gpu_id));
#endif

        model->set_max_memory_size_Byte(parser.param_cmd.max_mem_size);
        model->load_from_file(model_file_path);
        file.close();
        file.open(output_file_path, fstream::out);

        vector<float_type> predict_y;
        predict_y = model->predict(predict_dataset.instances(), -1);
        for (int i = 0; i < predict_y.size(); ++i) {
            file << predict_y[i] << std::endl;
        }
        file.close();

        if (metric) {
            LOG(INFO) << metric->name() << " = " << metric->score(predict_y, predict_dataset.y());
        }
    }
开发者ID:Joyeewen,项目名称:mascot_svm,代码行数:45,代码来源:svm_interface_api.cpp

示例3: thundersvm_train_sub

    //void DataSet_load_from_python(DataSet *dataset, float *y, char **x, int len) {dataset->load_from_python(y, x, len);}
    void thundersvm_train_sub(DataSet& train_dataset, CMDParser& parser, char* model_file_path){
        SvmModel *model = nullptr;
        switch (parser.param_cmd.svm_type) {
            case SvmParam::C_SVC:
                model = new SVC();
                break;
            case SvmParam::NU_SVC:
                model = new NuSVC();
                break;
            case SvmParam::ONE_CLASS:
                model = new OneClassSVC();
                break;
            case SvmParam::EPSILON_SVR:
                model = new SVR();
                break;
            case SvmParam::NU_SVR:
                model = new NuSVR();
                break;
        }

        //todo add this to check_parameter method
        if (parser.param_cmd.svm_type == SvmParam::NU_SVC) {
            train_dataset.group_classes();
            for (int i = 0; i < train_dataset.n_classes(); ++i) {
                int n1 = train_dataset.count()[i];
                for (int j = i + 1; j < train_dataset.n_classes(); ++j) {
                    int n2 = train_dataset.count()[j];
                    if (parser.param_cmd.nu * (n1 + n2) / 2 > min(n1, n2)) {
                        printf("specified nu is infeasible\n");
                        return;
                    }
                }
            }
        }
		if (parser.param_cmd.kernel_type != SvmParam::LINEAR)
            if (!parser.gamma_set) {
                parser.param_cmd.gamma = 1.f / train_dataset.n_features();
            }
#ifdef USE_CUDA
        CUDA_CHECK(cudaSetDevice(parser.gpu_id));
#endif

        vector<float_type> predict_y, test_y;
        if (parser.do_cross_validation) {
            predict_y = model->cross_validation(train_dataset, parser.param_cmd, parser.nr_fold);
        } else {
            model->train(train_dataset, parser.param_cmd);
            model->save_to_file(model_file_path);
            LOG(INFO) << "evaluating training score";
            predict_y = model->predict(train_dataset.instances(), -1);
            //predict_y = model->predict(train_dataset.instances(), 10000);
            //test_y = train_dataset.y();
        }
        Metric *metric = nullptr;
        switch (parser.param_cmd.svm_type) {
            case SvmParam::C_SVC:
            case SvmParam::NU_SVC: {
                metric = new Accuracy();
                break;
            }
            case SvmParam::EPSILON_SVR:
            case SvmParam::NU_SVR: {
                metric = new MSE();
                break;
            }
            case SvmParam::ONE_CLASS: {
            }
        }
        if (metric) {
            LOG(INFO) << metric->name() << " = " << metric->score(predict_y, train_dataset.y()) << std::endl;
        }
        return;
    }
开发者ID:Joyeewen,项目名称:mascot_svm,代码行数:74,代码来源:svm_interface_api.cpp

示例4: thundersvm_predict_matlab

    void thundersvm_predict_matlab(int argc, char **argv){
        CMDParser parser;
        parser.parse_command_line(argc, argv);

        char model_file_path[1024] = DATASET_DIR;
        char predict_file_path[1024] = DATASET_DIR;
        char output_file_path[1024] = DATASET_DIR;
        strcat(model_file_path, parser.svmpredict_model_file_name);
        strcat(predict_file_path, parser.svmpredict_input_file);
        strcat(output_file_path, parser.svmpredict_output_file);
        std::fstream file;
        //FILE *fp;
        //fp = fopen("model_file_path", "rb");
        file.open(model_file_path, std::fstream::in);
        string feature, svm_type;
        //char feature[20];
        //char svm_type[20];
        //fscanf(fp, "%s", feature);
        //fscanf(fp, "%s", svm_type);
        file >> feature >> svm_type;
        CHECK_EQ(feature, "svm_type");
        SvmModel *model = nullptr;
        Metric *metric = nullptr;
        if (svm_type == "c_svc") {
            model = new SVC();
            metric = new Accuracy();
        } else if (svm_type == "nu_svc") {
            model = new NuSVC();
            metric = new Accuracy();
        } else if (svm_type == "one_class") {
            model = new OneClassSVC();
            //todo determine a metric
        } else if (svm_type == "epsilon_svr") {
            model = new SVR();
            metric = new MSE();
        } else if (svm_type == "nu_svr") {
            model = new NuSVR();
            metric = new MSE();
        }

    #ifdef USE_CUDA
        CUDA_CHECK(cudaSetDevice(parser.gpu_id));
    #endif

        model->load_from_file(model_file_path);
        //fclose(fp);
	file.close();
        //fp = fopen("output_file_path", "wb");
        file.open(output_file_path, std::fstream::out);
        DataSet predict_dataset;
        predict_dataset.load_from_file(predict_file_path);
        vector<float_type> predict_y;
        predict_y = model->predict(predict_dataset.instances(), 10000);
	    for (int i = 0; i < predict_y.size(); ++i) {
            //fprintf(fp, "%s\n", predict_y[i]);
            file << predict_y[i] << std::endl;
        }
        //fclose(fp);
	file.close();
        if (metric) {
            LOG(INFO) << metric->name() << " = " << metric->score(predict_y, predict_dataset.y());
        }
    }
开发者ID:aman15012,项目名称:thundersvm,代码行数:63,代码来源:svm_matlab_interface.cpp


注:本文中的Metric::name方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。