当前位置: 首页>>代码示例>>C++>>正文


C++ Metric::getAccuracy方法代码示例

本文整理汇总了C++中Metric::getAccuracy方法的典型用法代码示例。如果您正苦于以下问题:C++ Metric::getAccuracy方法的具体用法?C++ Metric::getAccuracy怎么用?C++ Metric::getAccuracy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Metric的用法示例。


在下文中一共展示了Metric::getAccuracy方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: train


//.........这里部分代码省略.........
  srand(0);
  std::vector<int> indexes;
  for (int i = 0; i < inputSize; ++i)
    indexes.push_back(i);

  static Metric eval, metric_dev, metric_test;
  static vector<Example> subExamples;
  int devNum = devExamples.size(), testNum = testExamples.size();
  for (int iter = 0; iter < m_options.maxIter; ++iter) {
    std::cout << "##### Iteration " << iter << std::endl;

    random_shuffle(indexes.begin(), indexes.end());
    eval.reset();
    for (int updateIter = 0; updateIter < batchBlock; updateIter++) {
      subExamples.clear();
      int start_pos = updateIter * m_options.batchSize;
      int end_pos = (updateIter + 1) * m_options.batchSize;
      if (end_pos > inputSize)
        end_pos = inputSize;

      for (int idy = start_pos; idy < end_pos; idy++) {
        subExamples.push_back(trainExamples[indexes[idy]]);
      }

      int curUpdateIter = iter * batchBlock + updateIter;
      dtype cost = m_classifier.process(subExamples, curUpdateIter);

      eval.overall_label_count += m_classifier._eval.overall_label_count;
      eval.correct_label_count += m_classifier._eval.correct_label_count;

      if ((curUpdateIter + 1) % m_options.verboseIter == 0) {
        //m_classifier.checkgrads(subExamples, curUpdateIter+1);
        std::cout << "current: " << updateIter + 1 << ", total block: " << batchBlock << std::endl;
        std::cout << "Cost = " << cost << ", Tag Correct(%) = " << eval.getAccuracy() << std::endl;
      }
      m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps);

    }

    if (devNum > 0) {
      bCurIterBetter = false;
      if (!m_options.outBest.empty())
        decodeInstResults.clear();
      metric_dev.reset();
      for (int idx = 0; idx < devExamples.size(); idx++) {
        vector<string> result_labels;
        predict(devExamples[idx].m_features, result_labels, devInsts[idx].words);

        if (m_options.seg)
          devInsts[idx].SegEvaluate(result_labels, metric_dev);
        else
          devInsts[idx].Evaluate(result_labels, metric_dev);

        if (!m_options.outBest.empty()) {
          curDecodeInst.copyValuesFrom(devInsts[idx]);
          curDecodeInst.assignLabel(result_labels);
          decodeInstResults.push_back(curDecodeInst);
        }
      }

      metric_dev.print();

      if (!m_options.outBest.empty() && metric_dev.getAccuracy() > bestDIS) {
        m_pipe.outputAllInstances(devFile + m_options.outBest, decodeInstResults);
        bCurIterBetter = true;
      }
开发者ID:LeonCrashCode,项目名称:NNSegmentation,代码行数:67,代码来源:SparseLabeler.cpp

示例2: train


//.........这里部分代码省略.........

  int maxIter = m_options.maxIter * (inputSize / m_options.batchSize + 1);
  int oneIterMaxRound = (inputSize + m_options.batchSize -1) / m_options.batchSize;
  std::cout << "maxIter = " << maxIter << std::endl;
  int devNum = devInsts.size(), testNum = testInsts.size();

  static vector<vector<string> > decodeInstResults;
  static vector<string> curDecodeInst;
  static bool bCurIterBetter;
  static vector<vector<string> > subInstances;
  static vector<vector<CAction> > subInstGoldActions;

  for (int iter = 0; iter < maxIter; ++iter) {
    std::cout << "##### Iteration " << iter << std::endl;
    srand(iter);
    random_shuffle(indexes.begin(), indexes.end());
    std::cout << "random: " << indexes[0] << ", " << indexes[indexes.size() - 1] << std::endl;    
    bool bEvaluate = false;
    if(m_options.batchSize == 1){
    	eval.reset();
	    bEvaluate = true;
	    for (int idy = 0; idy < inputSize; idy++) {
	      subInstances.clear();
	      subInstGoldActions.clear();
	      subInstances.push_back(trainInsts[indexes[idy]].chars);
	      subInstGoldActions.push_back(trainInstGoldactions[indexes[idy]]);
	      	
	      double cost = m_classifier.train(subInstances, subInstGoldActions);
	
	      eval.overall_label_count += m_classifier._eval.overall_label_count;
	      eval.correct_label_count += m_classifier._eval.correct_label_count;
	
	      if ((idy + 1) % (m_options.verboseIter*10) == 0) {
	        std::cout << "current: " << idy + 1 << ", Cost = " << cost << ", Correct(%) = " << eval.getAccuracy() << std::endl;
	      }
	      m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps, m_options.clip);
	    }
	    std::cout << "current: " << iter + 1  << ", Correct(%) = " << eval.getAccuracy() << std::endl;
    }
    else{
    	if(iter == 0)eval.reset();
  		subInstances.clear();
      subInstGoldActions.clear();
    	for (int idy = 0; idy < m_options.batchSize; idy++) {
	      subInstances.push_back(trainInsts[indexes[idy]].chars);
	      subInstGoldActions.push_back(trainInstGoldactions[indexes[idy]]);    		
    	}
      double cost = m_classifier.train(subInstances, subInstGoldActions);

      eval.overall_label_count += m_classifier._eval.overall_label_count;
      eval.correct_label_count += m_classifier._eval.correct_label_count;
      
      if ((iter + 1) % (m_options.verboseIter) == 0) {
      	std::cout << "current: " << iter + 1 << ", Cost = " << cost << ", Correct(%) = " << eval.getAccuracy() << std::endl;
      	eval.reset();
      	bEvaluate = true;
      }
      
      m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps, m_options.clip);
    }
    
    if (bEvaluate && devNum > 0) {
      bCurIterBetter = false;
      if (!m_options.outBest.empty())
        decodeInstResults.clear();
      metric_dev.reset();
开发者ID:LinguList,项目名称:NNTransitionSegmentor,代码行数:67,代码来源:LSTMNCSegmentor.cpp

示例3: train

void Segmentor::train(const string& trainFile, const string& devFile, const string& testFile, const string& modelFile, const string& optionFile, const string& lexiconFile) {
	if (optionFile != "")
		m_options.load(optionFile);

	m_options.showOptions();
	vector<Instance> trainInsts, devInsts, testInsts;
	m_pipe.readInstances(trainFile, trainInsts, m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);
	if (devFile != "")
		m_pipe.readInstances(devFile, devInsts, m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);
	if (testFile != "")
		m_pipe.readInstances(testFile, testInsts, m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);

	vector<vector<Instance> > otherInsts(m_options.testFiles.size());
	for (int idx = 0; idx < m_options.testFiles.size(); idx++) {
		m_pipe.readInstances(m_options.testFiles[idx], otherInsts[idx], m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);
	}

	createAlphabet(trainInsts);

	m_classifier.init(m_options.delta);
	m_classifier.setDropValue(m_options.dropProb);

	vector<vector<CAction> > trainInstGoldactions;
	getGoldActions(trainInsts, trainInstGoldactions);
	double bestPostagFmeasure = 0;

	int inputSize = trainInsts.size();

	std::vector<int> indexes;
	for (int i = 0; i < inputSize; ++i)
		indexes.push_back(i);

	static Metric eval;
	static Metric segMetric_dev, segMetric_test;
	static Metric postagMetric_dev, postagMetric_test;

	int maxIter = m_options.maxIter * (inputSize / m_options.batchSize + 1);
	int oneIterMaxRound = (inputSize + m_options.batchSize - 1) / m_options.batchSize;
	std::cout << "maxIter = " << maxIter << std::endl;
	int devNum = devInsts.size(), testNum = testInsts.size();

	static vector<CResult> decodeInstResults;
	static CResult curDecodeInst;
	static bool bCurIterBetter;
	static vector<Instance > subInstances;
	static vector<vector<CAction> > subInstGoldActions;

	for (int iter = 0; iter < maxIter; ++iter) {
		std::cout << "##### Iteration " << iter << std::endl;
		srand(iter);
		random_shuffle(indexes.begin(), indexes.end());
		std::cout << "random: " << indexes[0] << ", " << indexes[indexes.size() - 1] << std::endl;
		bool bEvaluate = false;
		if (m_options.batchSize == 1) {
			eval.reset();
			bEvaluate = true;
			for (int idy = 0; idy < inputSize; idy++) {
				subInstances.clear();
				subInstGoldActions.clear();
				subInstances.push_back(trainInsts[indexes[idy]]);
				subInstGoldActions.push_back(trainInstGoldactions[indexes[idy]]);

				double cost = m_classifier.train(subInstances, subInstGoldActions);

				eval.overall_label_count += m_classifier._eval.overall_label_count;
				eval.correct_label_count += m_classifier._eval.correct_label_count;

				if ((idy + 1) % (m_options.verboseIter * 10) == 0) {
					std::cout << "current: " << idy + 1 << ", Cost = " << cost << ", Correct(%) = " << eval.getAccuracy() << std::endl;
				}
				m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps);
			}
			std::cout << "current: " << iter + 1 << ", Correct(%) = " << eval.getAccuracy() << std::endl;
		}
		else {
			if (iter == 0)
				eval.reset();
			subInstances.clear();
			subInstGoldActions.clear();
			for (int idy = 0; idy < m_options.batchSize; idy++) {
				subInstances.push_back(trainInsts[indexes[idy]]);
				subInstGoldActions.push_back(trainInstGoldactions[indexes[idy]]);
			}
			double cost = m_classifier.train(subInstances, subInstGoldActions);

			eval.overall_label_count += m_classifier._eval.overall_label_count;
			eval.correct_label_count += m_classifier._eval.correct_label_count;

			if ((iter + 1) % (m_options.verboseIter) == 0) {
				std::cout << "current: " << iter + 1 << ", Cost = " << cost << ", Correct(%) = " << eval.getAccuracy() << std::endl;
				eval.reset();
				bEvaluate = true;
			}

			m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps);
		}

		if (bEvaluate && devNum > 0) {
			bCurIterBetter = false;
			if (!m_options.outBest.empty())
//.........这里部分代码省略.........
开发者ID:zhangmeishan,项目名称:NNTransitionPOSTagging,代码行数:101,代码来源:LinearSegmentor.cpp

示例4: train


//.........这里部分代码省略.........
  int devNum = devExamples.size(), testNum = testExamples.size();

  int maxIter = m_options.maxIter;
  if (m_options.batchSize > 1)
    maxIter = m_options.maxIter * (inputSize / m_options.batchSize + 1);

  double cost = 0.0;
  std::cout << "maxIter = " << maxIter << std::endl;
  for (int iter = 0; iter < m_options.maxIter; ++iter) {
    std::cout << "##### Iteration " << iter << std::endl;
    eval.reset();
    if (m_options.batchSize == 1) {
      random_shuffle(indexes.begin(), indexes.end());
      for (int updateIter = 0; updateIter < inputSize; updateIter++) {
        subExamples.clear();
        int start_pos = updateIter;
        int end_pos = (updateIter + 1);
        if (end_pos > inputSize)
          end_pos = inputSize;

        for (int idy = start_pos; idy < end_pos; idy++) {
          subExamples.push_back(trainExamples[indexes[idy]]);
        }

        int curUpdateIter = iter * inputSize + updateIter;
        cost = m_classifier.process(subExamples, curUpdateIter);

        eval.overall_label_count += m_classifier._eval.overall_label_count;
        eval.correct_label_count += m_classifier._eval.correct_label_count;

        if ((curUpdateIter + 1) % m_options.verboseIter == 0) {
          //m_classifier.checkgrads(subExamples, curUpdateIter+1);
          std::cout << "current: " << updateIter + 1 << ", total instances: " << inputSize << std::endl;
          std::cout << "Cost = " << cost << ", SA Correct(%) = " << eval.getAccuracy() << std::endl;
        }
        m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps);
      }
    } else {
      cost = 0.0;
      for (int updateIter = 0; updateIter < m_options.verboseIter; updateIter++) {
        random_shuffle(indexes.begin(), indexes.end());
        subExamples.clear();
        for (int idy = 0; idy < m_options.batchSize; idy++) {
          subExamples.push_back(trainExamples[indexes[idy]]);
        }
        int curUpdateIter = iter * m_options.verboseIter + updateIter;
        cost += m_classifier.process(subExamples, curUpdateIter);
        //m_classifier.checkgrads(subExamples, curUpdateIter);
        eval.overall_label_count += m_classifier._eval.overall_label_count;
        eval.correct_label_count += m_classifier._eval.correct_label_count;

        m_classifier.updateParams(m_options.regParameter, m_options.adaAlpha, m_options.adaEps);
      }
      std::cout << "current iter: " << iter + 1 << ", total iter: " << maxIter << std::endl;
      std::cout << "Cost = " << cost << ", SA Correct(%) = " << eval.getAccuracy() << std::endl;
    }

    if (devNum > 0) {
      bCurIterBetter = false;
      if (!m_options.outBest.empty())
        decodeInstResults.clear();
      metric_dev.reset();
      for (int idx = 0; idx < devExamples.size(); idx++) {
        string result_label;
        double confidence = predict(devExamples[idx].m_features, result_label);
开发者ID:SherlockYangBing,项目名称:TitleCaption,代码行数:66,代码来源:HCharDetector.cpp


注:本文中的Metric::getAccuracy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。