当前位置: 首页>>代码示例>>C++>>正文


C++ MeshBase::n_active_local_elem方法代码示例

本文整理汇总了C++中MeshBase::n_active_local_elem方法的典型用法代码示例。如果您正苦于以下问题:C++ MeshBase::n_active_local_elem方法的具体用法?C++ MeshBase::n_active_local_elem怎么用?C++ MeshBase::n_active_local_elem使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MeshBase的用法示例。


在下文中一共展示了MeshBase::n_active_local_elem方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assign_partitioning

void ParmetisPartitioner::assign_partitioning (MeshBase & mesh)
{
  // This function must be run on all processors at once
  libmesh_parallel_only(mesh.comm());

  const dof_id_type
    first_local_elem = _pmetis->vtxdist[mesh.processor_id()];

  std::vector<std::vector<dof_id_type> >
    requested_ids(mesh.n_processors()),
    requests_to_fill(mesh.n_processors());

  MeshBase::element_iterator elem_it  = mesh.active_elements_begin();
  MeshBase::element_iterator elem_end = mesh.active_elements_end();

  for (; elem_it != elem_end; ++elem_it)
    {
      Elem * elem = *elem_it;

      // we need to get the index from the owning processor
      // (note we cannot assign it now -- we are iterating
      // over elements again and this will be bad!)
      libmesh_assert_less (elem->processor_id(), requested_ids.size());
      requested_ids[elem->processor_id()].push_back(elem->id());
    }

  // Trade with all processors (including self) to get their indices
  for (processor_id_type pid=0; pid<mesh.n_processors(); pid++)
    {
      // Trade my requests with processor procup and procdown
      const processor_id_type procup = (mesh.processor_id() + pid) % mesh.n_processors();
      const processor_id_type procdown = (mesh.n_processors() +
                                          mesh.processor_id() - pid) % mesh.n_processors();

      mesh.comm().send_receive (procup,   requested_ids[procup],
                                procdown, requests_to_fill[procdown]);

      // we can overwrite these requested ids in-place.
      for (std::size_t i=0; i<requests_to_fill[procdown].size(); i++)
        {
          const dof_id_type requested_elem_index =
            requests_to_fill[procdown][i];

          libmesh_assert(_global_index_by_pid_map.count(requested_elem_index));

          const dof_id_type global_index_by_pid =
            _global_index_by_pid_map[requested_elem_index];

          const dof_id_type local_index =
            global_index_by_pid - first_local_elem;

          libmesh_assert_less (local_index, _pmetis->part.size());
          libmesh_assert_less (local_index, mesh.n_active_local_elem());

          const unsigned int elem_procid =
            static_cast<unsigned int>(_pmetis->part[local_index]);

          libmesh_assert_less (elem_procid, static_cast<unsigned int>(_pmetis->nparts));

          requests_to_fill[procdown][i] = elem_procid;
        }

      // Trade back
      mesh.comm().send_receive (procdown, requests_to_fill[procdown],
                                procup,   requested_ids[procup]);
    }

  // and finally assign the partitioning.
  // note we are iterating in exactly the same order
  // used to build up the request, so we can expect the
  // required entries to be in the proper sequence.
  elem_it  = mesh.active_elements_begin();
  elem_end = mesh.active_elements_end();

  for (std::vector<unsigned int> counters(mesh.n_processors(), 0);
       elem_it != elem_end; ++elem_it)
    {
      Elem * elem = *elem_it;

      const processor_id_type current_pid = elem->processor_id();

      libmesh_assert_less (counters[current_pid], requested_ids[current_pid].size());

      const processor_id_type elem_procid =
        requested_ids[current_pid][counters[current_pid]++];

      libmesh_assert_less (elem_procid, static_cast<unsigned int>(_pmetis->nparts));
      elem->processor_id() = elem_procid;
    }
}
开发者ID:kerstipj,项目名称:libmesh,代码行数:90,代码来源:parmetis_partitioner.C

示例2: initialize

void ParmetisPartitioner::initialize (const MeshBase & mesh,
                                      const unsigned int n_sbdmns)
{
  const dof_id_type n_active_local_elem = mesh.n_active_local_elem();

  // Set parameters.
  _pmetis->wgtflag = 2;                                      // weights on vertices only
  _pmetis->ncon    = 1;                                      // one weight per vertex
  _pmetis->numflag = 0;                                      // C-style 0-based numbering
  _pmetis->nparts  = static_cast<Parmetis::idx_t>(n_sbdmns); // number of subdomains to create
  _pmetis->edgecut = 0;                                      // the numbers of edges cut by the
                                                             // partition

  // Initialize data structures for ParMETIS
  _pmetis->vtxdist.resize (mesh.n_processors()+1); std::fill (_pmetis->vtxdist.begin(), _pmetis->vtxdist.end(), 0);
  _pmetis->tpwgts.resize  (_pmetis->nparts);       std::fill (_pmetis->tpwgts.begin(),  _pmetis->tpwgts.end(),  1./_pmetis->nparts);
  _pmetis->ubvec.resize   (_pmetis->ncon);         std::fill (_pmetis->ubvec.begin(),   _pmetis->ubvec.end(),   1.05);
  _pmetis->part.resize    (n_active_local_elem);   std::fill (_pmetis->part.begin(),    _pmetis->part.end(), 0);
  _pmetis->options.resize (5);
  _pmetis->vwgt.resize    (n_active_local_elem);

  // Set the options
  _pmetis->options[0] = 1;  // don't use default options
  _pmetis->options[1] = 0;  // default (level of timing)
  _pmetis->options[2] = 15; // random seed (default)
  _pmetis->options[3] = 2;  // processor distribution and subdomain distribution are decoupled

  // Find the number of active elements on each processor.  We cannot use
  // mesh.n_active_elem_on_proc(pid) since that only returns the number of
  // elements assigned to pid which are currently stored on the calling
  // processor. This will not in general be correct for parallel meshes
  // when (pid!=mesh.processor_id()).
  _n_active_elem_on_proc.resize(mesh.n_processors());
  mesh.comm().allgather(n_active_local_elem, _n_active_elem_on_proc);

  // count the total number of active elements in the mesh.  Note we cannot
  // use mesh.n_active_elem() in general since this only returns the number
  // of active elements which are stored on the calling processor.
  // We should not use n_active_elem for any allocation because that will
  // be inheritly unscalable, but it can be useful for libmesh_assertions.
  dof_id_type n_active_elem=0;

  // Set up the vtxdist array.  This will be the same on each processor.
  // ***** Consult the Parmetis documentation. *****
  libmesh_assert_equal_to (_pmetis->vtxdist.size(),
                           cast_int<std::size_t>(mesh.n_processors()+1));
  libmesh_assert_equal_to (_pmetis->vtxdist[0], 0);

  for (processor_id_type pid=0; pid<mesh.n_processors(); pid++)
    {
      _pmetis->vtxdist[pid+1] = _pmetis->vtxdist[pid] + _n_active_elem_on_proc[pid];
      n_active_elem += _n_active_elem_on_proc[pid];
    }
  libmesh_assert_equal_to (_pmetis->vtxdist.back(), static_cast<Parmetis::idx_t>(n_active_elem));

  // ParMetis expects the elements to be numbered in contiguous blocks
  // by processor, i.e. [0, ne0), [ne0, ne0+ne1), ...
  // Since we only partition active elements we should have no expectation
  // that we currently have such a distribution.  So we need to create it.
  // Also, at the same time we are going to map all the active elements into a globally
  // unique range [0,n_active_elem) which is *independent* of the current partitioning.
  // This can be fed to ParMetis as the initial partitioning of the subdomains (decoupled
  // from the partitioning of the objects themselves).  This allows us to get the same
  // resultant partitioning independed of the input partitioning.
  MeshTools::BoundingBox bbox =
    MeshTools::bounding_box(mesh);

  _global_index_by_pid_map.clear();

  // Maps active element ids into a contiguous range independent of partitioning.
  // (only needs local scope)
  vectormap<dof_id_type, dof_id_type> global_index_map;

  {
    std::vector<dof_id_type> global_index;

    // create the mapping which is contiguous by processor
    dof_id_type pid_offset=0;
    for (processor_id_type pid=0; pid<mesh.n_processors(); pid++)
      {
        MeshBase::const_element_iterator       it  = mesh.active_pid_elements_begin(pid);
        const MeshBase::const_element_iterator end = mesh.active_pid_elements_end(pid);

        // note that we may not have all (or any!) the active elements which belong on this processor,
        // but by calling this on all processors a unique range in [0,_n_active_elem_on_proc[pid])
        // is constructed.  Only the indices for the elements we pass in are returned in the array.
        MeshCommunication().find_global_indices (mesh.comm(),
                                                 bbox, it, end,
                                                 global_index);

        for (dof_id_type cnt=0; it != end; ++it)
          {
            const Elem * elem = *it;
            libmesh_assert (!_global_index_by_pid_map.count(elem->id()));
            libmesh_assert_less (cnt, global_index.size());
            libmesh_assert_less (global_index[cnt], _n_active_elem_on_proc[pid]);

            _global_index_by_pid_map.insert(std::make_pair(elem->id(), global_index[cnt++] + pid_offset));
          }

//.........这里部分代码省略.........
开发者ID:kerstipj,项目名称:libmesh,代码行数:101,代码来源:parmetis_partitioner.C

示例3: build_graph

void ParmetisPartitioner::build_graph (const MeshBase & mesh)
{
  // build the graph in distributed CSR format.  Note that
  // the edges in the graph will correspond to
  // face neighbors
  const dof_id_type n_active_local_elem  = mesh.n_active_local_elem();

  // If we have boundary elements in this mesh, we want to account for
  // the connectivity between them and interior elements.  We can find
  // interior elements from boundary elements, but we need to build up
  // a lookup map to do the reverse.

  typedef LIBMESH_BEST_UNORDERED_MULTIMAP<const Elem *, const Elem *>
    map_type;
  map_type interior_to_boundary_map;

  {
    MeshBase::const_element_iterator       elem_it  = mesh.active_elements_begin();
    const MeshBase::const_element_iterator elem_end = mesh.active_elements_end();

    for (; elem_it != elem_end; ++elem_it)
      {
        const Elem * elem = *elem_it;

        // If we don't have an interior_parent then there's nothing to look us
        // up.
        if ((elem->dim() >= LIBMESH_DIM) ||
            !elem->interior_parent())
          continue;

        // get all relevant interior elements
        std::set<const Elem *> neighbor_set;
        elem->find_interior_neighbors(neighbor_set);

        std::set<const Elem *>::iterator n_it = neighbor_set.begin();
        for (; n_it != neighbor_set.end(); ++n_it)
          {
            // FIXME - non-const versions of the Elem set methods
            // would be nice
            Elem * neighbor = const_cast<Elem *>(*n_it);

#if defined(LIBMESH_HAVE_UNORDERED_MULTIMAP) || \
  defined(LIBMESH_HAVE_TR1_UNORDERED_MAP) ||    \
  defined(LIBMESH_HAVE_HASH_MAP) ||             \
  defined(LIBMESH_HAVE_EXT_HASH_MAP)
            interior_to_boundary_map.insert
              (std::make_pair(neighbor, elem));
#else
            interior_to_boundary_map.insert
              (interior_to_boundary_map.begin(),
               std::make_pair(neighbor, elem));
#endif
          }
      }
  }

#ifdef LIBMESH_ENABLE_AMR
  std::vector<const Elem *> neighbors_offspring;
#endif

  std::vector<std::vector<dof_id_type> > graph(n_active_local_elem);
  dof_id_type graph_size=0;

  const dof_id_type first_local_elem = _pmetis->vtxdist[mesh.processor_id()];

  MeshBase::const_element_iterator       elem_it  = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

  for (; elem_it != elem_end; ++elem_it)
    {
      const Elem * elem = *elem_it;

      libmesh_assert (_global_index_by_pid_map.count(elem->id()));
      const dof_id_type global_index_by_pid =
        _global_index_by_pid_map[elem->id()];

      const dof_id_type local_index =
        global_index_by_pid - first_local_elem;
      libmesh_assert_less (local_index, n_active_local_elem);

      std::vector<dof_id_type> & graph_row = graph[local_index];

      // Loop over the element's neighbors.  An element
      // adjacency corresponds to a face neighbor
      for (unsigned int ms=0; ms<elem->n_neighbors(); ms++)
        {
          const Elem * neighbor = elem->neighbor(ms);

          if (neighbor != libmesh_nullptr)
            {
              // If the neighbor is active treat it
              // as a connection
              if (neighbor->active())
                {
                  libmesh_assert(_global_index_by_pid_map.count(neighbor->id()));
                  const dof_id_type neighbor_global_index_by_pid =
                    _global_index_by_pid_map[neighbor->id()];

                  graph_row.push_back(neighbor_global_index_by_pid);
                  graph_size++;
//.........这里部分代码省略.........
开发者ID:kerstipj,项目名称:libmesh,代码行数:101,代码来源:parmetis_partitioner.C

示例4: build_graph

void ParmetisPartitioner::build_graph (const MeshBase& mesh)
{
  // build the graph in distributed CSR format.  Note that
  // the edges in the graph will correspond to
  // face neighbors
  const unsigned int n_active_local_elem  = mesh.n_active_local_elem();

  std::vector<const Elem*> neighbors_offspring;

  std::vector<std::vector<unsigned int> > graph(n_active_local_elem);
  unsigned int graph_size=0;

  const unsigned int first_local_elem = _vtxdist[libMesh::processor_id()];

  MeshBase::const_element_iterator       elem_it  = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

  for (; elem_it != elem_end; ++elem_it)
    {
      const Elem* elem = *elem_it;

      libmesh_assert (_global_index_by_pid_map.count(elem->id()));
      const unsigned int global_index_by_pid =
	_global_index_by_pid_map[elem->id()];

      const unsigned int local_index =
	global_index_by_pid - first_local_elem;
      libmesh_assert_less (local_index, n_active_local_elem);

      std::vector<unsigned int> &graph_row = graph[local_index];

      // Loop over the element's neighbors.  An element
      // adjacency corresponds to a face neighbor
      for (unsigned int ms=0; ms<elem->n_neighbors(); ms++)
	{
	  const Elem* neighbor = elem->neighbor(ms);

	  if (neighbor != NULL)
	    {
	      // If the neighbor is active treat it
	      // as a connection
	      if (neighbor->active())
		{
		  libmesh_assert(_global_index_by_pid_map.count(neighbor->id()));
		  const unsigned int neighbor_global_index_by_pid =
		    _global_index_by_pid_map[neighbor->id()];

		  graph_row.push_back(neighbor_global_index_by_pid);
		  graph_size++;
		}

#ifdef LIBMESH_ENABLE_AMR

	      // Otherwise we need to find all of the
	      // neighbor's children that are connected to
	      // us and add them
	      else
		{
		  // The side of the neighbor to which
		  // we are connected
		  const unsigned int ns =
		    neighbor->which_neighbor_am_i (elem);
                  libmesh_assert_less (ns, neighbor->n_neighbors());

		  // Get all the active children (& grandchildren, etc...)
		  // of the neighbor.
		  neighbor->active_family_tree (neighbors_offspring);

		  // Get all the neighbor's children that
		  // live on that side and are thus connected
		  // to us
		  for (unsigned int nc=0; nc<neighbors_offspring.size(); nc++)
		    {
		      const Elem* child =
			neighbors_offspring[nc];

		      // This does not assume a level-1 mesh.
		      // Note that since children have sides numbered
		      // coincident with the parent then this is a sufficient test.
		      if (child->neighbor(ns) == elem)
			{
			  libmesh_assert (child->active());
			  libmesh_assert (_global_index_by_pid_map.count(child->id()));
			  const unsigned int child_global_index_by_pid =
			    _global_index_by_pid_map[child->id()];

			  graph_row.push_back(child_global_index_by_pid);
			  graph_size++;
			}
		    }
		}

#endif /* ifdef LIBMESH_ENABLE_AMR */


	    }
	}
    }

  // Reserve space in the adjacency array
//.........这里部分代码省略.........
开发者ID:paulovieira,项目名称:libmesh,代码行数:101,代码来源:parmetis_partitioner.C


注:本文中的MeshBase::n_active_local_elem方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。